دوره ۱۴، شماره ۳ - ( ۶-۱۴۰۳ )                   جلد ۱۴ شماره ۳ صفحات ۴۴۹۵-۴۴۷۲ | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nazemian M, Nazemian M, Hosseini Bohloli M, Hosseini Bohloli H, HosseiniTazek M R. Role of Nozzle Hole Diameter in Modulating Spray Dynamics and Enhancing Combustion Performance in Reactivity-Controlled Compression Ignition Engines. ASE 2024; 14 (3) :4472-4495
URL: http://www.iust.ac.ir/ijae/article-1-694-fa.html
Role of Nozzle Hole Diameter in Modulating Spray Dynamics and Enhancing Combustion Performance in Reactivity-Controlled Compression Ignition Engines. Automotive Science and Engineering. ۱۴۰۳; ۱۴ (۳) :۴۴۷۲-۴۴۹۵

URL: http://www.iust.ac.ir/ijae/article-۱-۶۹۴-fa.html


چکیده:   (۳۳۴۸ مشاهده)
This study investigates the influence of nozzle hole diameter (NHD) variations on spray dynamics, combustion efficiency, and emissions in a Reactivity-Controlled Compression Ignition (RCCI) engine using Computational Fluid Dynamics (CFD) simulations with the CONVERGE software. The study systematically examines NHDs ranging from 130 µm to 175 µm and evaluates their impact on key parameters such as injection pressure, droplet formation, Sauter Mean Diameter (SMD), and evaporation rates. The results demonstrate that reducing NHD to 130 µm significantly enhances fuel atomization by reducing SMD to 15.49 µm and increasing droplet number by 24%, which in turn accelerates evaporation and improves fuel-air mixing. These effects shorten ignition delays, accelerate combustion, and increase peak cylinder pressures and temperatures. Optimal NHDs (150–160 µm) achieve the highest combustion efficiency (92.04%) and gross indicated efficiency (38.58%). However, further reduction in NHD below this range causes premature ignition, energy dissipation, and higher NOx emissions (10.08 g/kWh) due to elevated combustion temperatures. Conversely, when the NHD increases to 175 µm, the larger droplets formed result in prolonged ignition delays, slower combustion, and lower peak pressures. These effects negatively impact combustion efficiency and promote incomplete combustion, leading to higher HC (15.27 gr/kWh) and CO (4.22 gr/kWh) emissions. Larger NHDs, however, lower NOx emissions to 2.66 gr/kWh due to reduced peak temperatures. This study clearly identifies an optimal NHD range (150–160 µm) that effectively balances droplet size, evaporation rate, combustion timing, and emission reduction, thereby enhancing both engine performance and environmental sustainability.
متن کامل [PDF 1397 kb]   (۷۳۵ دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: موتور احتراق داخلی

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بین‌المللی مهندسی خودرو می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Automotive Science and Engineering

Designed & Developed by : Yektaweb