Showing 2 results for Adhesive Joints
Mr David Zarifpour, Mr Mehdi Dadashi, Dr Javad Marzbanrad,
Volume 13, Issue 3 (9-2023)
Abstract
This paper presents an experimental study on the effect of adhesive thickness on the maximum load of adhesive joints under static and impact loading, using the double cantilever beam (DCB) test method. The DCB specimens were prepared with varying adhesive thicknesses and subjected to impact loading using a drop weight impact tester. The maximum load was recorded for each specimen. The results indicated that the maximum load of the adhesive joints increases with increasing adhesive thickness up to 5 mm, beyond which the maximum load decreases with further increase in adhesive thickness. Moreover, the failure mode of the adhesive joint was found to be strongly dependent on the adhesive thickness, with thicker adhesive layers exhibiting an adhesive failure mode but in thinner thicknesses, the adhesive mode is cohesive. These findings provide important insights into the design and optimization of adhesive joints for applications that are subject to impact loading.
Jamal Bidadi, Hamed Saeidi Googarchin,
Volume 14, Issue 3 (9-2024)
Abstract
Adhesively bonded joints are a highly effective method for achieving lightweight structural designs, yet assessing their long-term durability remains a significant challenge. Creep, a time-dependent effect caused by sustained mechanical loads, can result in viscous strain within adhesive materials, potentially leading to crack formation in bonded structures over extended periods. This study investigates the creep behavior of adhesive joints under sustained tensile loads, focusing on the effects of adhesive layer thickness and the presence of adhesive fillets. Creep tests conducted over 48 hours revealed that higher load levels result in greater strain accumulation, with thicker adhesive layers showing increased susceptibility to deformation. Additionally, joints with adhesive fillets demonstrated lower creep strain, indicating enhanced resistance to sustained loads. These findings emphasize the importance of adhesive layer thickness and fillet design in optimizing the long-term performance and durability of bonded joints, offering valuable insights for applications where creep resistance is critical for joint reliability and service life.