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Abstract

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault
diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform
(WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole
transmission line down. It is therefore crucial for engineers and researchers to monitor the health condition
of the gearbox in a timely manner to eliminate the impending faults. However, useful fault detection
information is often submerged in heavy background noise. The non-stationary vibration signals were
analyzed to reveal the operation state of the gearbox. The proposed method is applied to the fault diagnosis
of gears and bearings in the gearbox. The diagnosis results show that the proposed method is able to reliably
identify the different fault categories which include both single fault and compound faults, which has a better
classification performance compared to any one of the individual classifiers. The vibration dataset is used
from a test rig in Shahrekord University and a gearbox from Sepahan Cement. Eventually, the gearbox faults

are classified using these statistical features as input to WSVM.
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1. Introduction

Gearboxes are widely employed in a variety of
industrial applications. The breakdowns of the
transmission machinery resulted from the gearbox
failures account for 80% and the malfunctions of the
gearbox are mostly caused by the gear and bearing
faults [1]. Therefore, since the efficient running of
machinery plays an influential part in the economics of
an organization, it is necessary and critical that the
early detection and diagnosis of gear and bearing faults
should be performed to prevent breakdown accidents
and reduce the economic loss. Up to date great
importance has been paid to the studies aiming at
gearbox-fault identification and characterization.
Among available diagnosis techniques vibration
analysis is manifestly the most commonly used and
also very efficient method because vibration signals
can capture important dynamic information that
reflects the states of the machines [1-4]. Classical
techniques, including the spectral analysis [5], time
domain averaging [6], and time-series analysis [7],
have been proven to be effective for the stationary
vibration signals. However, in reality the measured

data is inherently nonstationary. In order to analyze
nonstationary signals, a series of advanced techniques
have been developed, such as Wigner—Ville
distributions  (WVDs) [8], empirical mode
decomposition (EMD) [9], S transform [10], order
tracking technique [11] and wavelet transform (WT)
[12], etc. However, in practice the vibration signal
acquisition always involves with a multi-channel
sensor system and these mentioned methods have been
widely used to process a single channel sensor data.
Thus it is inevitable to assess the efficiency of all the
sensors prior to the diagnosis to choose an optimal
channel [2]. However, the background noise makes it
difficult in determining the optimal channel [2]. To
overcome this problem, the independent component
analysis (ICA) is developed to find a suitable
representation of multi-channel sensors, which is
called the blind source separation (BSS) [13]. Each
sensor data of the gearbox can be regarded as the
mixture of different vibration components, including
the gear meshing vibration, body vibration of the
gearbox, vibration of the rolling bearings, and the noise
signal, etc. ICA can be useful in investigations of
vibration signals, by separating out noise contributions
from mixed sources and focusing on the correlated
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characteristics which presumably comes from the gear
faults [14]. Lin et al. [15,16] combined the ICA with
WT to detect the gear failures. Both the numerical
simulation and experimental tests show that the ICA
can efficiently extract independent features of the gear
meshing and simultaneously reduce the effect of noise.
Yang et al. [17] proved that by means of ICA and the
further feature extraction strategy based on residual
mutual information (RMI), higher than second order
features embedded in multi-channel vibration
measurements can be captured effectively. Literature
[18-20] also had shown the usefulness of the ICA for
the gear fault detection. Nevertheless, in their work the
noise sources were supposed to be mixed linearly with
the gear fault vibration and the linear ICA was
employed to process the experimental vibration data.
Since the gearbox vibration signals obtained from
experiment/practice are usually the nonlinear mixture,
the performance of the linear ICA still has much room
for improvement in these applications. The kernel ICA
(KICA) proposed by Bach and Jordan [21] focuses on
the nonlinear BSS problems and can separate the
desired source from the nonlinear mixed noise. Tian et
al. [22] used the KICA to process the transient acoustic
signal on gearbox, the analysis results showed that the
KICA is more robust than ICA, and the fault characters
were fully detected. The validity of the approach and
outcomes should be tested for the vibration signal of
the gearbox. As widely recognized, one challenging
task in fault diagnosis is feature extraction and
selection. In general, the original fault characteristics
obtained from advanced signal processing methods
(i.e. WVD, EMD and WT, etc.) contain some
redundant information. If use them as the signatures to
assess the gearbox health state, the performance may
be unsatisfactory. Hence, it is essential to remove the
useless features. The problem is that it is not easy to
determine the distinct features. One of the most
popular methods, principal component analysis (PCA)
has been proven to be effective for feature reduction
[23]. However, its main limitation lies in the ability of
preserving the nonlinear properties of the original
feature space [24-26]. Fortunately, the manifold
learning algorithms provide a new means to dealing
with the nonlinear dimensionality reduction problems.
Compared with the linear methods, the purpose of
manifold learning is to project the original high-
dimensional data into a lower dimensional feature
space by preserving the local topology of the original
data. Thus, the intrinsic structure of the data of interest
can be extracted effectively. Successful applications of
these new nonlinear feature selection methods can be
found in the field of image processing, speech
spectrograms, electroencephalography (EEG) and
electrocardiograph (ECG) signals for medical

diagnose [26]. Furthermore, very limited work has
been done to address the multiple faults detection of
gearboxes using manifold learning algorithm. Yang et
al. [27] proposed a method for nonlinear time series
noise reduction based on principal manifold learning
applied to the analysis of gearbox vibration signal with
tooth broken, but only for signal denoising. Li et al.
[28] proposed the multiple manifolds analysis (MMA)
approach to extract manifold information from the
bearing vibration signals with different faults and
Wang et al. [29] combined locally linear embedding
(LLE) and kernel fisher discriminant analysis (KFDA)
to detect rolling bearing fault. In the previous work we
also adopted the LLE algorithm for the feature
reduction of the gear crack level identification [3].
However, the nonlinear BSS problem was not
considered in these studies. Hence, it is worth
investigating the fault diagnosis performance for both
single and coupled faults of the gearbox

(including the gears and rolling bearings) by using
the integration of the KICA and manifold learning.
This paper aims to deal with multi-fault diagnosis of
the gearbox, including gear faults and rolling bearing
faults. A method is proposed based on the KICA, LLE
and fuzzy knearest neighbor (FKNN). In comparison
with the fault diagnosis method based on manifold
learning reported in [3,28,29], the proposed technique
in this work adopts not only nonlinear dimensionality
reduction algorithm, but also KICA for nonlinear BSS
problem. Thus, it possesses a more powerful fault
diagnosis capability than existing approaches. The
effectiveness of the proposed approach is
demonstrated by two case studies. Xian and Zeng [30]
developed an intelligent fault diagnosis procedure
based on wavelet packet transform (WPT) and hybrid
SVM. Zamanian and Ohadi [31] presented a method
for feature extraction based on exact wavelet analysis
to improve the fault diagnosis of gears. In their study,
feature extraction was based on maximization of local
Gaussian correlation function of wavelet coefficients.
They used from a linear support vector machine to
classify feature sets extracted with the presented
method. The rest of this paper is outlined as follows.
Section 2 briefly describes the fundamental theory of
wavelet packet decomposition and two wavelet
selection criteria. The proposed new machine health
status identification method is presented in Section 3,
followed by the experimental verification tests using
both bearing and gearbox datasets as stated in Section
4. In Section 5, the effect of different wavelet basis
functions on the performance of the proposed scheme
is discussed. Conclusions are drawn in Section 6.
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2. Theoretical background
2.1. The review of wavelet packet transform

The wavelet method is a signal processing
technique to represent and analyse a time signal in the
time-frequency domain. This method is based on the
shifted and scaled signal decomposition of a prototype
function called mother wavelet [27,31]. These
functions are similar to the complex sinusoid used in
the Fourier transform, except for two fundamental
differences: (1) the complex sinusoid lasts infinitely,
whereas the wavelets are functions of limited duration,
which are located in time (translation) and frequency
(dilatations); and (2) the sinusoid is smooth and
predictable, whereas the wavelet tends to be irregular
and asymmetric.

Let 1(t) € L2(R) be a function called mother
wavelet, then i, (t), with s, u € r, and s>0 are a
family of shifted and scaled functions of a mother
wavelet. This provides a modulated window ¥ (t),
which generates an entire family of elementary
functions by dilatations or contractions, and
translations in time defined by Eq. (1) [27,31]:

1 t—u
lpu,s(t) Z_d)( )

Vs s

Where s is the scaling parameter, and u the position
parameter. The wavelet transform (WT) in continues
time of a function is called a continuous wavelet
transform (CWT), which is calculated by the inner
product of the analysed signal with a family of shifted
and scaled wavelets, using the expression Eg. (2)
[27,31]:

CWTx(s,u) =< x(t), P, s(t) >

= %f:o x()y* (t_Tu) dt

The CWT is a useful method for the analysis of
non-stationary signals with different behaviours during
the sampling time, enabling the temporal location of
the components in the frequency domain. The main
drawback is low analytical-computational efficiency
limiting its use to off-line applications. For
applications requiring real-time signal processing,
wavelet analysis is performed using two methods
termed discrete wavelet transform (DWT), and wavelet
packet transform (WPT). Both methods decompose the
signal into a mutually orthogonal set of wavelets,
derived from the application of a pyramidal algorithm
of convolutions with quadrature mirror filters, based
on the coefficients described in Egs. (3) and (4)

A (k) = z h(n — 2k)cj_1 (n)

Dy(k) = ) g(n = 2K)g;_4 ()

Where A_j (k) and D_j (k) are scaling and wavelet
coefficients, j is the number of transformation levels
with j=1, 2, ...; k is the number of scaled and wavelet
coefficients with k=1, 2, ..., Nx2-j

, Where N is the total number of samples of the
original signal; h and g are low-pass and high-pass
coefficients of the scaled function and wavelet
function, respectively, based on a chosen mother
wavelet; and n is the filter length. These coefficients
successively decompose the original signal into
approximation (low frequency) or detail (high
frequency) signals using the scaled and wavelet
coefficients, respectively. In the WPT method for 3-
level decomposition, at level L1 (j=1) the original
signal is decomposed in two frequency ranges: an
approximation A (scaling coefficients) is calculated
using a low-pass filter (H), and a detail D (wavelet
coefficients) calculated with a high-pass filter (G).
Low-pass filters remove high frequency fluctuations
and preserve slow trends, and high-pass filters remove
the slow trends and preserve high frequency. After
filtering, the original signal is decimated by a factor of
2, so that the approximation and detail coefficients are
equal in number to the sample data of the original
signal. Moreover, this procedure eliminates redundant
information and  significantly  enhances the
performance of the algorithm. At decomposition level
L2 (j=2), A and D are subdivided into approximation
AA and AD, and detail DA and DD coefficients,
respectively. At level L3 (j=3) the procedure is
repeated. The approximation and detail coefficients
generate at each level independent frequency packets
consisting of Nx2-j coefficients. This procedure is
repeated until the desired wavelet decomposition level
is achieved. In this paper optimal decomposition level
of wavelet is selected based on the Maximum Energy
to Shannon Entropy ratio criteria [32].

3. Multi class wavelet SVM

In this section, the wavelet kernel, OAA and OAO
MSVM strategies are presented.

3.1. Wavelet kernel
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The WSVM aims at finding the ideal classification
in the space spanned by multidimensional wavelet. The
concept behind the wavelet analysis is to express a
signal by a family of functions generated by h(x) called
mother wavelet [33]:

hae@) = lal™/2h (~—)

where X, a, ¢ € R, ais a dilation factor, and c is a
translation factor. A common multidimensional
wavelet function can be expressed as the product of 1D
wavelet function [34]:

hGx) = 1_[ hx)

where N is the dimension number. Let h(x) denotes
a mother kernel function. Then dot product wavelet
kernels are:

k(xx)—l_[h( ‘i ( Ci)

The deC|S|on functlon for classification is:

o
fG) = sign Zaiyi]_[w(x 5 |+
i=1 j=1 L

In this paper, four kernel functions are used:
wavelet Morlet, wavelet Maxican hat, Gaussian
wavelet kernel and wavelet Shannon. The multi-class
classification strategy, such as OAA, OAO and OAOT
with different wavelet kernel functions is used for
classification in this paper [35].

4. Experimental setup
4.1. Case study 1: Shahrekord test rig

The experimental setup at Shahrekord University
to collect dataset consists of a one-stage gearbox with
spur gears, a flywheel and an electrical motor. The test
rig has been shown in Figure 1. Vibration signals are
obtained in the radial direction by mounting the
accelerometer on the top of the gearbox. "Easy Viber"
data collector and its software, "SpectraPro", are used
for data acquisition. The sensitivity and dynamic range
of accelerometer probe are 100mv/g and £50 g. The
signals are sampled at 16000 Hz lasting 2 s. In the
present study, four pinion wheels are used. The
vibration signal from accelerometer is captured for the
following conditions: good gear, gear with tooth
breakage, chipped tooth gear and eccentric gear. For
bearing vibration signal acquisition four self-aligning
ball bearings (1209K) are used. One new bearing is
considered as good bearing. In the other three bearings,
some defects are created and then various bearings are
installed and the raw vibration signals acquired on the
bearing housing. So the vibration signals are captured
for the following conditions: good bearing, bearing
with spall on inner race, bearing with spall on outer
race, bearing with spall on ball and bearing with
combine defect. Figure 2 shows the faults in the
baering of Shahrekord test rig.

Fig2. Bearing component with fault (Shahrekord test rig), outer race fault, inner race fault and ball fault
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(b)

Fig3.(a) The gear fault test setup (Sepahan Cement), and (b) the appearance of the faulty gears.

4.2. Case study 2: gear fault diagnosis

The gear fault simulator setup with sensor is shown
in Figure 3. It is a two-stage gear transmission system
and its transmission path is as:

Input — (Z26/264) — (Z240/285)— output.

Two piezoelectric accelerometers (CA-YD-106)
are mounted on the flat surface of the input shaft and
output shaft to collect the gearbox vibrations. The
vibrations have been measured under six different gear
conditions: pattern A-normal, pattern B-single cracked
tooth, pattern C-single spalled gear, pattern D-single
broken tooth, pattern E-compound fault of cracked and
broken tooth, pattern F-compound fault of worn and
spalled tooth. The single gear fault to be analyzed was
introduced on the 40-tooth gear carried on the
transmission shaft, and the compound fault occurred in
the Z40/Z85 gear pair. The vibration data is acquired
under 750 rpm with heavy-load. The sampling
frequency was 10,000 Hz and sample length was
19,456 for all conditions. Each sensor has sampled 50
times for every gear condition and the total samples are
300 for each sensor.

5. Result and discussion

Six base wavelets such as Meyer, symlet16, cofi5,
rbio6.8, bior6.8 and db44 are selected for this work.
Based on two wavelet selection cratria, Daubechies
wavelet (db44) and Meyer are selected as the best base
wavelet among the other wavelets considered from the
Maximum Relative Energy and Maximum Energy to
Shannon Entropy criteria respectively [37]. The
wavelet packet coefficients of all signals with db44 and
Meyer are calculated at the eighth level of

decomposition. After WPT, 2304 statistical features
are extracted from the 256 nodes at eight
decomposition levels. When applying wavelet
transform to a signal, if the Shannon entropy measure
of a particular scale is minimum then we can say that a
major defect frequency component exists in the scale
but, in the present study out of 256 scales considered,
the scale having the Maximum Energy to Shannon
Entropy of healthy condition is selected, and the
statistical features of the wavelet packet coefficient
corresponding to the selected level are calculated.
Statistical moments like kurtosis, skewness and
standard deviation are descriptors of the shape of the
amplitude distribution of vibration data, and have some
advantages over traditional time and frequency
analysis, such as its lower sensitivity to the variations
of load and speed. In the present paper, authors’ use
statistical moments like standard deviation, crest
factor, absolute mean amplitude value, variance,
kurtosis, skewness and fourth central moment as
features to effectively indicate early faults occurring in
rolling element bearings and gears. In addition, energy
and Shannon entropy of the wavelet coefficients are
used as two new features along with other statistical
parameters as input of the classifier. These statistical
features are fed as input to the soft computing
techniques like SVM for fault classification. Two cases
of input data and feature sets are considered for
classification. In case A, statistical parameters of
wavelet packet transform are considered (for each type
of the gearbox fault). Case B is related to the condition
that statistical features in optimal level, which has been
extracted based on the criteria of Maximum Energy to
Shannon Entropy ratio, are considered (for each type
of gearbox fault). In addition, energy and Shannon
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entropy factors are used as two new features as
features sets in this case. Table 1 shows the results of
classification of gearbox with Maximum Energy to
Shannon Entropy criterion. In the case B, by Maximum
Energy to Shannon Entropy ratio criterion (Table 1),
for test set, correctly classified instances is 96.25%.
While wusing 10-fold cross validation average
classification accuracy is 95.41%.

Table 2 shows accuracy for fault classification with
Maximum Relative Wavelet Energy criterion. The
correctly classified (case B) instances using test set is
92.91% . For 10-fold cross validation, average
classification accuracies for WSVM is 92.08%. which
is slightly less than the previous case. From Tables 1
and 2, we found that the Maximum Energy to Shannon
Entropy criterion with two new features is better for
fault classification of gearbox with respect to
Maximum Relative Wavelet Energy criterion.
Furthermore, the accuracy comparison of WSVM with
OAOT, OAA and OAO with Maximum Energy to
Shannon Entropy is listed in Table 3. From Table 3, it
is clear the proposed method based on wavelet support
vector machine using the Morlet wavelet kernel has
improved the classification accuracy by 8.09% with
respect to Shannon wavelet kernel. In this case, the
overall average classification accuracy is 95%. From
Table 3, we find that the classification accuracy with
OAQT strategy is better than OAA and OAO.

Figures 4 shows the testing time and training time
of WSVM with three strategies. We can observe that
the training time in OAA is bigger than in OAO and
OAOT under all kernel functions. As shown in Figure
4, the performance of the Morlet kernel for machinery

fault diagnosis is acceptable. From Figure 4, we find
that the Morlet kernel has the least testing and training
time with respect to other kernel functions. It is clear
from Figure 5, the multi kernel has the least training
and testing time with OAQOT algorithm. Therefore the
OAQT strategy is better than OAO and OAA for the
problem.

Figure 5 shows that the accuracy of WSVM using
OAOQT algorithm with Mexican hat kernel reaches the
highest point (94.16%) with C=38.7 and a=0.83.
Similarly, when we apply the Mexican hat kernel to
OAO algorithm and OAA algorithm, the best
classification ratio is 86.24% and 90.41%,
respectively. Figure 4 shows that the accuracy of
WSVM using OAOT algorithm with the Morlet kernel
function reaches the highest point (96.24%) with
C=29.7 and a=0.74. Similarly, when we apply the
Morlet kernel to OAO algorithm and OAA algorithm,
the best classification ratio with same a, and C is
89.16% and 92.91%, respectively. Figure 5 shows that
the accuracy of MSVM using OAOT algorithm with
the Shannon kernel reaches the highest point (86.66%)
with C=50 and a=0.4. Similarly, when we apply the
Shannon kernel to OAO algorithm and OAA
algorithm, the best classification ratio is 81.66% and
84.16%, respectively.

Figure 8 shows that the accuracy of MSVM using
OAOT algorithm with the Gaussian kernel reaches the
highest point (91.66%) with C=100 and a=0.5. Also,
when we apply the Gaussian kernel to OAQ algorithm
and OAA algorithm, the best classification ratio is
85.41% and 88.74%, respectively.

Table 1. Classification performance (Maximum Energy to Shannon Entropy criterion)

Parameters

WSVM (with Morlet kernel)

Test set 10-fold cross validation

Correctly classified Case A 225 (93.75%) 222 (92.50%)
Case B 231 (96.25%) 229 (95.41%)
Incorrectly classified Case A 15 (6.25%) 18 (7.5%)
Case B 9 (3.75%) 11 (4.85%)
Total number of instances 240 240
Case A (WSVM) 137.41
Training time ()
Case B (WSVM) 140.90
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Table 2. Classification performance (Maximum Relative Wavelet Energy criterion)

Parameters WSVM (with Morlet kernel)
Test set 10-fold cross validation
Correctly classified Case A 218 (90.83%) 215 (89.58%)
Case B 223 (92.91%) 221 (92.08%)
Incorrectly classified Case A 22 (9.16%) 25 (10.41%)
Case B 17 (7.08%) 19 (7.91%)
Total number of instances 240 240
Case A (WSVM) 144.28
Training time (s)
Case B (WSVM) 149.05

Table 3. The classified result of experiment data using WSVM with three methods

Fault classification accuracy based on SVM with kernel (%)
. L Morlet Mexican hat
Operating condition C=29.7, C=38.7, Gaussian Shannon
a=0.74 a=0.83

OAOT 96.66 93.33 90 86.66

Outer race fault OAA 93.33 93.33 90 83.33

OAO 90 86.33 86.33 83.33
OAOT 96.66 96.66 93.33 90

Inner race fault OAA 93.33 90 86.66 83.33

OAO 90 86.66 86.66 83.33

OAOT 100 96.66 93.33 86.66

Roller fault OAA 96.66 93.33 90 83.33

OAO 93.33 90 90 83.33

OAOT 96.66 93.33 93.33 86.66

Combine fault OAA 93.33 90 90 83.33
OAO 90 86.66 83.33 80

OAOT 97.49 94.99 92.49 86.66

Average accuracy (bearing) | OAA 94.16 91.66 89.16 83.33

OAO 90.83 87.49 86.66 82.49

OAOT 100 96.66 96.66 86.66

Chipped tooth gear OAA 96.66 90 90 86.66
OAO 86.66 83.33 83.33 80

OAOQOT 93.33 93.33 90 86.66

Eccentric gear OAA 90 86.66 86.66 83.33
OAO 90 83.33 83.33 80

OAOQOT 93.33 90 86.66 83.33

Broken-tooth gear OAA 90 90 86.66 83.33
OAO 86.66 86.66 83.33 80
OAOQOT 93.33 93.33 90 90

Good gearbox OAA 90 90 90 86.66

OAO 86.66 86.66 86.66 83.33

OAOQOT 94.99 93.33 90.83 86.66

Average accuracy (gear) | OAA 91.66 89.16 88.33 84.99

OAO 87.49 84.99 84.16 80.83
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6. Conclusions

Impending fault detection and identification for
gearboxes, (specifically, the gears and rolling
bearings), is of great importance to the reliable
operation throughout their service lives. The use of the
vibration signals is a promising way to assess the
health condition of the gearbox in practice. However,
the recorded vibrations are always corrupted by heavy
background noise. Therefore, a new diagnostic method
combining the wavelet transform and wavelet support
vector machine has been proposed for the gearbox
multi-fault diagnosis in this work. The experimental
tests on the gear failures and rolling bearing faults have
been implemented and presented to verify the efficacy
of the newly proposed approach. The two experimental
case studies show that (a) the experimental vibration
signals on the gearbox can be demixed by the WPT
with a small amount of information losing, (b)
nonlinear property of the fault characteristics can be
captured by the WSAVM, and hence the fault detection
rate has been increased, and (c) the proposed intelligent
diagnosis method can provide satisfactory fault
detection performance for the gearbox. The newly
proposed method can enhance the ability of fault
detection for both the gears and rolling bearings. Thus,
the proposed diagnosis approach in this work may
provide practical and effective utilities for gearbox
fault diagnosis as well as other complex machines such
as vehicle transmission systems in future research.
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