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Abstract 

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault 

diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform 

(WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole 

transmission line down. It is therefore crucial for engineers and researchers to monitor the health condition 

of the gearbox in a timely manner to eliminate the impending faults. However, useful fault detection 

information is often submerged in heavy background noise. The non-stationary vibration signals were 

analyzed to reveal the operation state of the gearbox. The proposed method is applied to the fault diagnosis 

of gears and bearings in the gearbox. The diagnosis results show that the proposed method is able to reliably 

identify the different fault categories which include both single fault and compound faults, which has a better 

classification performance compared to any one of the individual classifiers. The vibration dataset is used 

from a test rig in Shahrekord University and a gearbox from Sepahan Cement. Eventually, the gearbox faults 

are classified using these statistical features as input to WSVM. 

Keywords: gearbox, fault diagnosis, wavelet, support vector machine

1. Introduction 

Gearboxes are widely employed in a variety of 

industrial applications. The breakdowns of the 

transmission machinery resulted from the gearbox 

failures account for 80% and the malfunctions of the 

gearbox are mostly caused by the gear and bearing 

faults [1]. Therefore, since the efficient running of 

machinery plays an influential part in the economics of 

an organization, it is necessary and critical that the 

early detection and diagnosis of gear and bearing faults 

should be performed to prevent breakdown accidents 

and reduce the economic loss. Up to date great 

importance has been paid to the studies aiming at 

gearbox-fault identification and characterization. 

Among available diagnosis techniques vibration 

analysis is manifestly the most commonly used and 

also very efficient method because vibration signals 

can capture important dynamic information that 

reflects the states of the machines [1–4]. Classical 

techniques, including the spectral analysis [5], time 

domain averaging [6], and time-series analysis [7], 

have been proven to be effective for the stationary 

vibration signals. However, in reality the measured 

data is inherently nonstationary. In order to analyze 

nonstationary signals, a series of advanced techniques 

have been developed, such as Wigner–Ville 

distributions (WVDs) [8], empirical mode 

decomposition (EMD) [9], S transform [10], order 

tracking technique [11] and wavelet transform (WT) 

[12], etc. However, in practice the vibration signal 

acquisition always involves with a multi-channel 

sensor system and these mentioned methods have been 

widely used to process a single channel sensor data. 

Thus it is inevitable to assess the efficiency of all the 

sensors prior to the diagnosis to choose an optimal 

channel [2]. However, the background noise makes it 

difficult in determining the optimal channel [2]. To 

overcome this problem, the independent component 

analysis (ICA) is developed to find a suitable 

representation of multi-channel sensors, which is 

called the blind source separation (BSS) [13]. Each 

sensor data of the gearbox can be regarded as the 

mixture of different vibration components, including 

the gear meshing vibration, body vibration of the 

gearbox, vibration of the rolling bearings, and the noise 

signal, etc. ICA can be useful in investigations of 

vibration signals, by separating out noise contributions 

from mixed sources and focusing on the correlated 
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characteristics which presumably comes from the gear 

faults [14]. Lin et al. [15,16] combined the ICA with 

WT to detect the gear failures. Both the numerical 

simulation and experimental tests show that the ICA 

can efficiently extract independent features of the gear 

meshing and simultaneously reduce the effect of noise. 

Yang et al. [17] proved that by means of ICA and the 

further feature extraction strategy based on residual 

mutual information (RMI), higher than second order 

features embedded in multi-channel vibration 

measurements can be captured effectively. Literature 

[18–20] also had shown the usefulness of the ICA for 

the gear fault detection. Nevertheless, in their work the 

noise sources were supposed to be mixed linearly with 

the gear fault vibration and the linear ICA was 

employed to process the experimental vibration data. 

Since the gearbox vibration signals obtained from 

experiment/practice are usually the nonlinear mixture, 

the performance of the linear ICA still has much room 

for improvement in these applications. The kernel ICA 

(KICA) proposed by Bach and Jordan [21] focuses on 

the nonlinear BSS problems and can separate the 

desired source from the nonlinear mixed noise. Tian et 

al. [22] used the KICA to process the transient acoustic 

signal on gearbox, the analysis results showed that the 

KICA is more robust than ICA, and the fault characters 

were fully detected. The validity of the approach and 

outcomes should be tested for the vibration signal of 

the gearbox. As widely recognized, one challenging 

task in fault diagnosis is feature extraction and 

selection. In general, the original fault characteristics 

obtained from advanced signal processing methods 

(i.e. WVD, EMD and WT, etc.) contain some 

redundant information. If use them as the signatures to 

assess the gearbox health state, the performance may 

be unsatisfactory. Hence, it is essential to remove the 

useless features. The problem is that it is not easy to 

determine the distinct features. One of the most 

popular methods, principal component analysis (PCA) 

has been proven to be effective for feature reduction 

[23]. However, its main limitation lies in the ability of 

preserving the nonlinear properties of the original 

feature space [24–26]. Fortunately, the manifold 

learning algorithms provide a new means to dealing 

with the nonlinear dimensionality reduction problems. 

Compared with the linear methods, the purpose of 

manifold learning is to project the original high-

dimensional data into a lower dimensional feature 

space by preserving the local topology of the original 

data. Thus, the intrinsic structure of the data of interest 

can be extracted effectively. Successful applications of 

these new nonlinear feature selection methods can be 

found in the field of image processing, speech 

spectrograms, electroencephalography (EEG) and 

electrocardiograph (ECG) signals for medical 

diagnose [26]. Furthermore, very limited work has 

been done to address the multiple faults detection of 

gearboxes using manifold learning algorithm. Yang et 

al. [27] proposed a method for nonlinear time series 

noise reduction based on principal manifold learning 

applied to the analysis of gearbox vibration signal with 

tooth broken, but only for signal denoising. Li et al. 

[28] proposed the multiple manifolds analysis (MMA) 

approach to extract manifold information from the 

bearing vibration signals with different faults and 

Wang et al. [29] combined locally linear embedding 

(LLE) and kernel fisher discriminant analysis (KFDA) 

to detect rolling bearing fault. In the previous work we 

also adopted the LLE algorithm for the feature 

reduction of the gear crack level identification [3]. 

However, the nonlinear BSS problem was not 

considered in these studies. Hence, it is worth 

investigating the fault diagnosis performance for both 

single and coupled faults of the gearbox 

(including the gears and rolling bearings) by using 

the integration of the KICA and manifold learning. 

This paper aims to deal with multi-fault diagnosis of 

the gearbox, including gear faults and rolling bearing 

faults. A method is proposed based on the KICA, LLE 

and fuzzy knearest neighbor (FKNN). In comparison 

with the fault diagnosis method based on manifold 

learning reported in [3,28,29], the proposed technique 

in this work adopts not only nonlinear dimensionality 

reduction algorithm, but also KICA for nonlinear BSS 

problem. Thus, it possesses a more powerful fault 

diagnosis capability than existing approaches. The 

effectiveness of the proposed approach is 

demonstrated by two case studies. Xian and Zeng [30] 

developed an intelligent fault diagnosis procedure 

based on wavelet packet transform (WPT) and hybrid 

SVM. Zamanian and Ohadi [31] presented a method 

for feature extraction based on exact wavelet analysis 

to improve the fault diagnosis of gears. In their study, 

feature extraction was based on maximization of local 

Gaussian correlation function of wavelet coefficients. 

They used from a linear support vector machine to 

classify feature sets extracted with the presented 

method. The rest of this paper is outlined as follows. 

Section 2 briefly describes the fundamental theory of 

wavelet packet decomposition and two wavelet 

selection criteria. The proposed new machine health 

status identification method is presented in Section 3, 

followed by the experimental verification tests using 

both bearing and gearbox datasets as stated in Section 

4. In Section 5, the effect of different wavelet basis 

functions on the performance of the proposed scheme 

is discussed. Conclusions are drawn in Section 6. 
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2. Theoretical background 

2.1. The review of wavelet packet transform 

The wavelet method is a signal processing 

technique to represent and analyse a time signal in the 

time-frequency domain. This method is based on the 

shifted and scaled signal decomposition of a prototype 

function called mother wavelet [27,31]. These 

functions are similar to the complex sinusoid used in 

the Fourier transform, except for two fundamental 

differences: (1) the complex sinusoid lasts infinitely, 

whereas the wavelets are functions of limited duration, 

which are located in time (translation) and frequency 

(dilatations); and (2) the sinusoid is smooth and 

predictable, whereas the wavelet tends to be irregular 

and asymmetric. 

Let 𝜓(𝑡) ∈ 𝐿2(𝑅)  be a function called mother 

wavelet, then 𝜓𝑠,𝑢(𝑡) , with s, u ∈ r, and s>0 are a 

family of shifted and scaled functions of a mother 

wavelet. This provides a modulated window 𝜓(𝑡) , 

which generates an entire family of elementary 

functions by dilatations or contractions, and 

translations in time defined by Eq. (1) [27,31]: 

𝜓𝑢,𝑠(𝑡) =
1

√𝑠
𝜓(

𝑡 − 𝑢

𝑠
) 

Where s is the scaling parameter, and u the position 

parameter. The wavelet transform (WT) in continues 

time of a function is called a continuous wavelet 

transform (CWT), which is calculated by the inner 

product of the analysed signal with a family of shifted 

and scaled wavelets, using the expression Eq. (2) 

[27,31]: 
𝐶𝑊𝑇𝑥(𝑠, 𝑢) =< 𝑥(𝑡), 𝜓𝑢,𝑠(𝑡) >

=
1

√𝑠
∫ 𝑥(𝑡)𝜓∗ (

𝑡 − 𝑢

𝑠
) 𝑑𝑡

+∞

−∞

 

The CWT is a useful method for the analysis of 

non-stationary signals with different behaviours during 

the sampling time, enabling the temporal location of 

the components in the frequency domain. The main 

drawback is low analytical-computational efficiency 

limiting its use to off-line applications. For 

applications requiring real-time signal processing, 

wavelet analysis is performed using two methods 

termed discrete wavelet transform (DWT), and wavelet 

packet transform (WPT). Both methods decompose the 

signal into a mutually orthogonal set of wavelets, 

derived from the application of a pyramidal algorithm 

of convolutions with quadrature mirror filters, based 

on the coefficients described in Eqs. (3) and (4) 

𝐴𝑗(𝑘) = ∑ ℎ(𝑛 − 2𝑘)𝑐𝑗−1(𝑛)

𝑛

 

𝐷𝑗(𝑘) = ∑ 𝑔(𝑛 − 2𝑘)𝑐𝑗−1(𝑛)

𝑛

 

Where A_j (k) and D_j (k) are scaling and wavelet 

coefficients, j is the number of transformation levels 

with j=1, 2, ...; k is the number of scaled and wavelet 

coefficients with k=1, 2, ..., N⨯2-j 

, where N is the total number of samples of the 

original signal; h and g are low-pass and high-pass 

coefficients of the scaled function and wavelet 

function, respectively, based on a chosen mother 

wavelet; and n is the filter length. These coefficients 

successively decompose the original signal into 

approximation (low frequency) or detail (high 

frequency) signals using the scaled and wavelet 

coefficients, respectively. In the WPT method for 3-

level decomposition, at level L1 (j=1) the original 

signal is decomposed in two frequency ranges: an 

approximation A (scaling coefficients) is calculated 

using a low-pass filter (H), and a detail D (wavelet 

coefficients) calculated with a high-pass filter (G). 

Low-pass filters remove high frequency fluctuations 

and preserve slow trends, and high-pass filters remove 

the slow trends and preserve high frequency. After 

filtering, the original signal is decimated by a factor of 

2, so that the approximation and detail coefficients are 

equal in number to the sample data of the original 

signal. Moreover, this procedure eliminates redundant 

information and significantly enhances the 

performance of the algorithm. At decomposition level 

L2 (j=2), A and D are subdivided into approximation 

AA and AD, and detail DA and DD coefficients, 

respectively. At level L3 (j=3) the procedure is 

repeated. The approximation and detail coefficients 

generate at each level independent frequency packets 

consisting of Nx2-j coefficients. This procedure is 

repeated until the desired wavelet decomposition level 

is achieved. In this paper optimal decomposition level 

of wavelet is selected based on the Maximum Energy 

to Shannon Entropy ratio criteria [32]. 

 

3. Multi class wavelet SVM 

In this section, the wavelet kernel, OAA and OAO 

MSVM strategies are presented. 

 

3.1. Wavelet kernel 
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The WSVM aims at finding the ideal classification 

in the space spanned by multidimensional wavelet. The 

concept behind the wavelet analysis is to express a 

signal by a family of functions generated by h(x) called 

mother wavelet [33]: 

ℎ𝑎,𝑐(𝑥) = |𝑎|−1 2⁄ ℎ (
𝑥 − 𝑐

𝑎
) 

where x, a, c ∈ R, a is a dilation factor, and c is a 

translation factor. A common multidimensional 

wavelet function can be expressed as the product of 1D 

wavelet function [34]: 

ℎ(𝑥) = ∏ ℎ(𝑥𝑖)

𝑁

𝑖=1

 

where N is the dimension number. Let h(x) denotes 

a mother kernel function. Then dot product wavelet 

kernels are: 

𝑘(𝑥, 𝑥́) = ∏ ℎ(
𝑥𝑖 − 𝑐𝑖

𝑎

𝑁

𝑖=1

)ℎ (
𝑥́𝑖 − 𝑐́𝑖

𝑎
) 

The decision function for classification is: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖 ∏ 𝜓(

𝑁

𝑗=1

𝑁

𝑖=1

𝑥𝑖 − 𝑥𝑖
𝑗

𝑎𝑖

)) + 𝑏 

In this paper, four kernel functions are used: 

wavelet Morlet, wavelet Maxican hat, Gaussian 

wavelet kernel and wavelet Shannon. The multi-class 

classification strategy, such as OAA, OAO and OAOT 

with different wavelet kernel functions is used for 

classification in this paper [35]. 

4. Experimental setup 

4.1. Case study 1: Shahrekord test rig 

The experimental setup at Shahrekord University 

to collect dataset consists of a one-stage gearbox with 

spur gears, a flywheel and an electrical motor. The test 

rig has been shown in Figure 1. Vibration signals are 

obtained in the radial direction by mounting the 

accelerometer on the top of the gearbox. "Easy Viber" 

data collector and its software, "SpectraPro", are used 

for data acquisition. The sensitivity and dynamic range 

of accelerometer probe are 100mv/g and ±50 g. The 

signals are sampled at 16000 Hz lasting 2 s. In the 

present study, four pinion wheels are used. The 

vibration signal from accelerometer is captured for the 

following conditions: good gear, gear with tooth 

breakage, chipped tooth gear and eccentric gear. For 

bearing vibration signal acquisition four self-aligning 

ball bearings (1209K) are used. One new bearing is 

considered as good bearing. In the other three bearings, 

some defects are created and then various bearings are 

installed and the raw vibration signals acquired on the 

bearing housing. So the vibration signals are captured 

for the following conditions: good bearing, bearing 

with spall on inner race, bearing with spall on outer 

race, bearing with spall on ball and bearing with 

combine defect. Figure 2 shows the faults in the 

baering of Shahrekord test rig.  

 

Fig1. . Fault simulator set up in Shahrekord University [36]. 

 

 

 

 

 

 

 

 
Fig2. Bearing component with fault (Shahrekord test rig), outer race fault, inner race fault and ball fault 
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Fig3. (a) The gear fault test setup (Sepahan Cement), and (b) the appearance of the faulty gears. 

 

4.2. Case study 2: gear fault diagnosis 

The gear fault simulator setup with sensor is shown 

in Figure 3. It is a two-stage gear transmission system 

and its transmission path is as: 

Input ⟶ (Z26/Z64) ⟶ (Z40/Z85)⟶ output. 

Two piezoelectric accelerometers (CA-YD-106) 

are mounted on the flat surface of the input shaft and 

output shaft to collect the gearbox vibrations. The 

vibrations have been measured under six different gear 

conditions: pattern A-normal, pattern B-single cracked 

tooth, pattern C-single spalled gear, pattern D-single 

broken tooth, pattern E-compound fault of cracked and 

broken tooth, pattern F-compound fault of worn and 

spalled tooth. The single gear fault to be analyzed was 

introduced on the 40-tooth gear carried on the 

transmission shaft, and the compound fault occurred in 

the Z40/Z85 gear pair. The vibration data is acquired 

under 750 rpm with heavy-load. The sampling 

frequency was 10,000 Hz and sample length was 

19,456 for all conditions. Each sensor has sampled 50 

times for every gear condition and the total samples are 

300 for each sensor. 

5. Result and discussion 

Six base wavelets such as Meyer, symlet16, cofi5, 

rbio6.8, bior6.8  and db44 are selected for this work. 

Based on two wavelet selection cratria, Daubechies 

wavelet (db44) and Meyer are selected as the best base 

wavelet among the other wavelets considered from the 

Maximum Relative Energy and Maximum Energy to 

Shannon Entropy criteria respectively [37]. The 

wavelet packet coefficients of all signals with db44 and 

Meyer are calculated at the eighth level of 

decomposition. After WPT, 2304 statistical features 

are extracted from the 256 nodes at eight 

decomposition levels. When applying wavelet 

transform to a signal, if the Shannon entropy measure 

of a particular scale is minimum then we can say that a 

major defect frequency component exists in the scale 

but, in the present study out of 256 scales considered, 

the scale having the Maximum Energy to Shannon 

Entropy of healthy condition is selected, and the 

statistical features of the wavelet packet coefficient 

corresponding to the selected level are calculated. 

Statistical moments like kurtosis, skewness and 

standard deviation are descriptors of the shape of the 

amplitude distribution of vibration data, and have some 

advantages over traditional time and frequency 

analysis, such as its lower sensitivity to the variations 

of load and speed. In the present paper, authors’ use 

statistical moments like standard deviation, crest 

factor, absolute mean amplitude value, variance, 

kurtosis, skewness and fourth central moment as 

features to effectively indicate early faults occurring in 

rolling element bearings and gears. In addition, energy 

and Shannon entropy of the wavelet coefficients are 

used as two new features along with other statistical 

parameters as input of the classifier. These statistical 

features are fed as input to the soft computing 

techniques like SVM for fault classification. Two cases 

of input data and feature sets are considered for 

classification. In case A, statistical parameters of 

wavelet packet transform are considered (for each type 

of the gearbox fault). Case B is related to the condition 

that statistical features in optimal level, which has been 

extracted based on the criteria of Maximum Energy to 

Shannon Entropy ratio, are considered (for each type 

of gearbox fault). In addition, energy and Shannon 
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entropy factors are used as two new features as 

features sets in this case. Table 1 shows the results of 

classification of gearbox with Maximum Energy to 

Shannon Entropy criterion. In the case B, by Maximum 

Energy to Shannon Entropy ratio criterion (Table 1), 

for test set, correctly classified instances is 96.25%. 

While using 10-fold cross validation average 

classification accuracy is 95.41%.  

Table 2 shows accuracy for fault classification with 

Maximum Relative Wavelet Energy criterion. The 

correctly classified (case B) instances using test set is 

92.91% . For 10-fold cross validation, average 

classification accuracies for WSVM is 92.08%. which 

is slightly less than the previous case. From Tables 1 

and 2, we found that the Maximum Energy to Shannon 

Entropy criterion with two new features is better for 

fault classification of gearbox with respect to 

Maximum Relative Wavelet Energy criterion. 

Furthermore, the accuracy comparison of WSVM with 

OAOT, OAA and OAO with Maximum Energy to 

Shannon Entropy is listed in Table 3. From Table 3, it 

is clear the proposed method based on wavelet support 

vector machine using the Morlet wavelet kernel has 

improved the classification accuracy by 8.09% with 

respect to Shannon wavelet kernel. In this case, the 

overall average classification accuracy is 95%. From 

Table 3, we find that the classification accuracy with 

OAOT strategy is better than OAA and OAO.  

Figures 4 shows the testing time and training time 

of WSVM with three strategies. We can observe that 

the training time in OAA is bigger than in OAO and 

OAOT under all kernel functions. As shown in Figure 

4, the performance of the Morlet kernel for machinery 

fault diagnosis is acceptable. From Figure 4, we find 

that the Morlet kernel has the least testing and training 

time with respect to other kernel functions. It is clear 

from Figure 5, the multi kernel has the least training 

and testing time with OAOT algorithm. Therefore the 

OAOT strategy is better than OAO and OAA for the 

problem.  

Figure 5 shows that the accuracy of WSVM using 

OAOT algorithm with Mexican hat kernel reaches the 

highest point (94.16%) with C=38.7 and a=0.83. 

Similarly, when we apply the Mexican hat kernel to 

OAO algorithm and OAA algorithm, the best 

classification ratio is 86.24% and 90.41%, 

respectively. Figure 4 shows that the accuracy of 

WSVM using OAOT algorithm with the Morlet kernel 

function reaches the highest point (96.24%) with 

C=29.7 and a=0.74. Similarly, when we apply the 

Morlet kernel to OAO algorithm and OAA algorithm, 

the best classification ratio with same a, and C is 

89.16% and 92.91%, respectively. Figure 5 shows that 

the accuracy of MSVM using OAOT algorithm with 

the Shannon kernel reaches the highest point (86.66%) 

with C=50 and a=0.4. Similarly, when we apply the 

Shannon kernel to OAO algorithm and OAA 

algorithm, the best classification ratio is 81.66% and 

84.16%, respectively. 

Figure 8 shows that the accuracy of MSVM using 

OAOT algorithm with the Gaussian kernel  reaches the 

highest point (91.66%) with C=100 and a=0.5. Also, 

when we apply the Gaussian kernel  to OAO algorithm 

and OAA algorithm, the best classification ratio is 

85.41% and 88.74%, respectively. 

 

Table 1. Classification performance (Maximum Energy to Shannon Entropy criterion) 

Parameters 

WSVM (with Morlet kernel) 

Test set  

 
10-fold cross validation 

Correctly classified 
Case A 225 (93.75%)  222 (92.50%) 

Case B 231 (96.25%)  229 (95.41%) 

Incorrectly classified 
Case A 15 (6.25%)  18 (7.5%) 

Case B 9 (3.75%)  11 (4.85%) 

Total number of instances 240 240 

Training time (s) 

Case A (WSVM) 137.41 

Case B (WSVM) 140.90 
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Table 2. Classification performance (Maximum Relative Wavelet Energy criterion) 

Parameters 
WSVM (with Morlet kernel) 

Test set 10-fold cross validation 

Correctly classified  
Case A 218 (90.83%)  215 (89.58%)  

Case B 223 (92.91%) 221 (92.08%)  

Incorrectly classified  
Case A 22 (9.16%)  25 (10.41%) 

Case B 17 (7.08%)  19 (7.91%) 

Total number of instances 240 240 

Training time (s) 

Case A (WSVM) 144.28 

Case B (WSVM) 149.05 

 

Table 3. The classified result of experiment data using WSVM with three methods 

Operating condition 

Fault classification accuracy based on SVM with kernel (%) 

Morlet 

C=29.7, 

a=0.74 

Mexican hat 

C=38.7, 

a=0.83 

Gaussian Shannon 

Outer race fault 

OAOT 96.66 93.33 90 86.66 

OAA 93.33 93.33 90 83.33 

OAO 90 86.33 86.33 83.33 

Inner race fault 

OAOT 96.66 96.66 93.33 90 

OAA 93.33 90 86.66 83.33 

OAO 90 86.66 86.66 83.33 

Roller fault 

OAOT 100 96.66 93.33 86.66 

OAA 96.66 93.33 90 83.33 

OAO 93.33 90 90 83.33 

Combine fault 

OAOT 96.66 93.33 93.33 86.66 

OAA 93.33 90 90 83.33 

OAO 90 86.66 83.33 80 

Average accuracy (bearing) 

OAOT 97.49 94.99 92.49 86.66 

OAA 94.16 91.66 89.16 83.33 

OAO 90.83 87.49 86.66 82.49 

Chipped tooth gear 

OAOT 100 96.66 96.66 86.66 

OAA 96.66 90 90 86.66 

OAO 86.66 83.33 83.33 80 

Eccentric gear 

OAOT 93.33 93.33 90 86.66 

OAA 90 86.66 86.66 83.33 

OAO 90 83.33 83.33 80 

Broken-tooth gear 

OAOT 93.33 90 86.66 83.33 

OAA 90 90 86.66 83.33 

OAO 86.66 86.66 83.33 80 

Good gearbox 

OAOT 93.33 93.33 90 90 

OAA 90 90 90 86.66 

OAO 86.66 86.66 86.66 83.33 

Average accuracy (gear) 

OAOT 94.99 93.33 90.83 86.66 

OAA 91.66 89.16 88.33 84.99 

OAO 87.49 84.99 84.16 80.83 
 

 [
 D

O
I:

 1
0.

22
06

8/
ija

e.
8.

1.
26

03
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 a
se

.iu
st

.a
c.

ir
 o

n 
20

26
-0

2-
04

 ]
 

                             8 / 12

http://dx.doi.org/10.22068/ijae.8.1.2603
https://ase.iust.ac.ir/article-1-454-en.html


M. Heidari          2610 

International Journal of Automotive Engineering  Vol. 4, Number 2, June 2014 

 

 

 

Fig4. Training time and testing time for WSVM 

 

 

Fig5. Comparison of accuracy using OAOT algorithm based on WPT feature extraction 

with Mexican hat kernel in different (C, a) 
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Fig6. Comparison of accuracy using OAOT algorithm based on WPT feature extraction 
with Morlet kernel in different (C, a) 

 

Fig7. Comparison of accuracy using OAOT algorithm based on WPT feature extraction with Shannon kernel in different (C, a) 

 

Fig8. Comparison of accuracy using OAOT algorithm based on WPT feature extraction with Gaussian kernel in different (C,a) 
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6. Conclusions 

Impending fault detection and identification for 

gearboxes, (specifically, the gears and rolling 

bearings), is of great importance to the reliable 

operation throughout their service lives. The use of the 

vibration signals is a promising way to assess the 

health condition of the gearbox in practice. However, 

the recorded vibrations are always corrupted by heavy 

background noise. Therefore, a new diagnostic method 

combining the wavelet transform and wavelet support 

vector machine has been proposed for the gearbox 

multi-fault diagnosis in this work. The experimental 

tests on the gear failures and rolling bearing faults have 

been implemented and presented to verify the efficacy 

of the newly proposed approach. The two experimental 

case studies show that (a) the experimental vibration 

signals on the gearbox can be demixed by the WPT 

with a small amount of information losing, (b) 

nonlinear property of the fault characteristics can be 

captured by the WSAVM, and hence the fault detection 

rate has been increased, and (c) the proposed intelligent 

diagnosis method can provide satisfactory fault 

detection performance for the gearbox. The newly 

proposed method can enhance the ability of fault 

detection for both the gears and rolling bearings. Thus, 

the proposed diagnosis approach in this work may 

provide practical and effective utilities for gearbox 

fault diagnosis as well as other complex machines such 

as vehicle transmission systems in future research. 
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