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This study proposes a hierarchical nested cascade control framework to
enhance voltage regulation and current management in fuel cell hybrid
electric vehicles (FCHEVs). The architecture addresses limitations of
conventional cascade control by reducing design complexity and
improving resilience under dynamic and uncertain conditions. It
integrates three coordinated layers: an outer control level (OCL)
employing an adaptive proportional-integral controller for DC bus
voltage regulation, and two internal layers, middle (MCL) and inner
(ICL), implemented via backstepping controllers for precise current
control of fuel cells, batteries, and supercapacitors. By combining
nonlinear control with model reference adaptive control, the system
dynamically tunes parameters to maintain voltage stability across
variable load profiles. Simulations using the WLTC-Class 3 cycle show
that the proposed strategy (Case 1) achieves superior battery
sustainability, with a final SOC of 74.2%, compared to 71% and 72.5%
in benchmark strategies (Cases 2 and 3). Under battery aging (20%
increased resistance, 15% reduced capacity), DC bus voltage remains
within +3.5 V of the 380 V reference, with only 18% ripple increase and
0.8% additional SOC depletion. A resilience index of 96.5% confirms
robustness, outperforming benchmarks (84.2%, 89.7%). To further
validate performance under real-world urban conditions, date-specific
driving cycles tailored for Shiraz city were employed. Results confirm
the framework’s effectiveness in sustaining stability, efficiency, and
scalability for next-generation FCHEV energy systems.

1. Introduction

Conventional internal combustion engine
vehicles, primarily reliant on fossil fuels, are
major contributors to greenhouse gas emissions
and urban air pollution; transitioning to clean and
energy-efficient electric vehicles (EVs) offers a
technically  feasible and  environmentally
responsible solution, in line with international
decarbonization strategies aimed at mitigating
climate change [1]. In EV applications, energy
demand exhibits significant variability, influenced
by both driving conditions and driver behavior.
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Typically, a sole primary energy source lacks the
responsiveness required to manage rapid
fluctuations in demand, which can accelerate
system degradation and reduce operational
lifespan; consequently, multi-source energy
systems are often employed to enhance reliability
and dynamic performance.

Among the various energy sources gaining
increased attention, proton exchange membrane
fuel cells (PEMFCs) have emerged as a focal
point due to their high efficiency, environmental
benefits, and suitability for transportation
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applications. PEMFCs offer a clean alternative by
converting chemical energy into electricity
through an electrochemical process, generating
only water and heat as byproducts [2]. These
features position them as promising candidates for
addressing the energy and environmental
challenges associated with transportation. Fuel
cell electric vehicles (FCEVs) are particularly
notable for their extended driving range, short
refueling times, silent operation, and zero local
emissions [3]. As a result, interest in FCEVs is on
the rise among researchers. However, FCEVs also
face technical hurdles such as slow transient
response and inability to recuperate braking
energy. To address these limitations, integrating
energy storage systems (ESS) such as batteries
and supercapacitors (SC) through hybridization
has emerged as a practical approach [4].

SCs demonstrate remarkable energy storage
properties, including rapid charge and discharge
capability, extended lifecycle, and stable
performance across diverse temperature ranges,
rendering them well-suited for high-power and
repetitive  cycling applications. Conversely,
lithium-ion batteries are distinguished by their fast
response times, low self-discharge rates, long
cycle life, and high energy density. Moreover,
implementing an appropriate liquid cooling
system remains a key challenge, as it plays a
crucial role in ensuring uniform temperature
distribution and effective heat dissipation [5].

These ESSs are frequently integrated into
hybrid configurations to address the limitations
associated with standalone FCEVs. When paired
these ESS with PEMFCs, the resulting
configuration is referred to as a fuel cell hybrid
electric vehicle (FCHEV). In multi-source energy
systems, optimal allocation of power across
various sources must be managed based on their
dynamic response characteristics. Hence, given
the distinct operating characteristics of PEMFCs
and ESSs, an energy management strategy (EMS)
is critical for optimal power distribution. Various
EMSs are designed based on system-specific
goals, each carrying its own merits and
limitations. The study outlined in [6] centers on
the creation of a simulation model for a FCHEV
traction system, developed using the MATLAB
Simulink environment. The research investigates
various topological configurations of battery
systems and hybrid traction architectures. The
proposed model employs a PEMFC as the
principal energy source. To accommodate the
irregularities in transport load demand, a high-
performance buffer storage unit based on lithium-
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titanium-oxide battery technology is integrated
into the system design.

Recent studies have placed growing emphasis
on the development of EMS, with a particular
focus on heuristic rule-based approaches that do
not involve optimization techniques [7, 8]. These
systems function in real-time without predictive
driving data but depend on predefined logic rules
based on battery state of charge (SOC) and load
requirements. Although simple to implement,
these approaches are reliant on designer expertise
and offer limited optimization [9]. Optimization-
based EMSs are typically classified into global
and instantaneous methods. Instantaneous
schemes, such as the equivalent consumption
minimization strategy, can operate without prior
data, demand fewer computational resources, and
support real-time power management [10].
Conversely, global methods, like dynamic
programming (DP), require complete knowledge
of driving profiles, which is impractical due to
inherent unpredictability in real-world vehicle
operation. Thus, globally optimized EMSs are
mostly used as reference models for performance
evaluation [11]. Article [12] introduced a dynamic
rule-based control approach that adapts to load
conditions and integrates an optimal control
scheme derived through DP, enabling efficient
real-time energy  management. Despite
effectiveness of DP, the dynamic rule-based
control strategy presents certain limitations. The
reliance on predefined rules may constrain
adaptability under highly unpredictable load
variations or novel operational scenarios.
Furthermore, while dynamic programming offers
optimal control capabilities, its computational
complexity can hinder real-time implementation,
particularly in systems with high dimensionality
or constrained processing resources.

Article [13] developed a reinforcement learning
framework tailored for FCHEVs equipped with
batteries and SCs. The system employs a fuzzy
filtering mechanism to layer the SC power
signals, while the equivalent consumption
minimization strategy algorithm strikes a balance
between holistic learning processes and real-time
applicability. This approach enhances
computational efficiency, suppresses fluctuations
in fuel cell (FC) output, and improves fuel
economy. While this approach provides a balance
between global learning and real-time application,
it might not always guarantee optimality under
rapidly changing driving conditions.

Another core challenge lies in dynamically
optimizing PEMFC output, as multi-physical
systems whose performance fluctuates with
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operational conditions [14]. The optimal output
power point, such as the highest efficiency
operating level, continually shifts within the
system’s working space. Operating PEMFCs
within high-efficiency zones not only conserves
energy but also prolongs lifespan [15]. Real-time
adaptation of FC parameters is therefore
necessary, which can be achieved via online
identification techniques such as recursive least
squares or the extended Kalman filter algorithm
[16]. A key shortcoming of this approach lies in
its limited capacity for real-time adaptation of FC
parameters, which are highly sensitive to
operational conditions.

In a novel and inventive approach, [17]
proposed an integral backstepping control method
in conjunction with a rule-based EMS for battery—
SC hybrid EVs. However, relying exclusively on
rule-based management is often suboptimal [18],
particularly due to the nature of power allocation
among the vehicle’s energy sources, which
includes both low and high-frequency
components. When batteries are subjected to high-
frequency power demands, their operational
lifespan may be compromised, leading to
accelerated degradation. Moreover, while the
backstepping approach offers indirect regulation
of the DC-bus voltage, it adds considerable
complexity to both the controller’s architecture
and functional dynamics. This stems from the
need to develop dedicated virtual controllers for
each system state variable, which fosters intricate
interactions between the virtual controllers and
their physical counterparts. Such complexities
may trigger unexpected oscillations or instability
under specific operating scenarios, most notably
during mode transitions between propulsion and
regenerative braking phases [18].

Recent studies have underscored the critical
need for multidimensional failure modeling in
lithium-ion battery packs deployed in electric
vehicles, especially under demanding operational
stress conditions. Within this framework, the
fuzzy logic-based failure mode and effects
analysis method proposed in [19] provides
meaningful insights into key failure contributors,
including sealing integrity, battery management
system  performance, thermal regulation
efficiency, and mechanical assembly robustness.
These findings collectively reinforce the
imperative of embedding fault-tolerant strategies
into control architectures to enhance system
reliability, safety, and longevity. Such integration
not only mitigates potential risks but also ensures
sustained performance across diverse operating
environments and evolving vehicular demands.

Bayat et al.

In Article [20], a new hybrid cascade control
framework combining proportional—integral (PI)
and backstepping methods was introduced to
manage DC-bus voltage in the presence of
uncertainties and fluctuating loads, while also
handling current reference tracking for the
onboard energy sources. Although this
configuration is simpler than purely backstepping-
based designs, it remains technically demanding
in terms of implementation and fine-tuning,
particularly during rapid operational transitions
where coordination between controllers becomes
critical. Furthermore, the PI controller’s reliance
on linear assumptions and fixed gain parameters
limits its adaptability in highly nonlinear or fast-
changing environments, often necessitating
manual recalibration for sustained performance.

To address limitations highlighted in earlier
research, a new hierarchical nested cascade
control framework is introduced. This approach
aims to overcome previously noted design
complexities while delivering a practical and
resilient solution. It is specifically tailored for
effective DC bus voltage regulation and current
management in battery—SC systems, particularly
under the variable power loads encountered in
real-world driving scenarios. This method
capitalizes on the distinct advantages offered by
hierarchical nested cascade control based
nonlinear control and adaptive PI (API) control
that adjusts the parameter of controller in real-
time to optimize performance and regulate the DC
bus voltage under varying operating conditions or
system uncertainties. In contrast, the nested
cascade controller is tasked with handling current
control for each energy source (FC, SC and
battery), owing to its robust capability in
managing system uncertainties and ensuring
stable performance under dynamic and transient
operating conditions. By integrating these two
techniques, the control system directly utilizes
physical control inputs, thereby eliminating the
need for virtual controllers. This simplification
reduces internal structural complexity and
prevents adverse interactions between control
layers. As a result, the system maintains robust
operation across varying conditions and ensures
seamless transitions between traction and
regenerative braking modes.

e A novel hierarchical nested cascade control
structure is proposed to reduce design
complexity and improve system resilience in
FCHEV applications, effectively addressing
the shortcomings of traditional cascade
control approaches.

Automotive Science and Engineering (ASE) 4835
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e The system integrates nonlinear hierarchical
control with API regulation, leveraging a
model reference adaptive control (MRAC)
framework to enable real-time tuning of
control parameters. This architecture ensures
optimized DC bus voltage regulation across a
wide range of load conditions and operational
uncertainties.

e A dedicated nested cascade controller using
three distinct backstepping (BS) controller
manages current control for FCs, SCs, and
batteries, leveraging its robustness against
uncertainties and  performance  during
dynamic transitions.

e By directly applying physical control inputs,
the approach avoids virtual controllers,
simplifying  internal  architecture  and
minimizing interference between control
layers.

o The overall system ensures stable operation
and smooth switching between traction and
regenerative braking, even under
unpredictable power demands seen in real
driving environments.

The structure of the article is as follows: Section
2 details the FCHEV components, Section 3
outlines the proposed EMS, Section 4 presents the
input data and simulation outcomes, and Section 5
concludes the study.

2. System framework

In the context of FCHEVs, energy demand is
highly variable, influenced by external factors
such as road conditions and traffic patterns, as
well as internal ones like individual driving
habits. Such volatility necessitates an adaptive
EMS within multi-source architectures, where
power allocation must be strategically distributed
in accordance with the transient behavior and
response capabilities of each energy source.

The FC, commonly employed as the central
power generation unit, is generally optimized for
steady-state operation. It lacks the responsiveness
needed to meet abrupt power demands, and if
forced to do so repeatedly, it can suffer
accelerated degradation, resulting in reduced
efficiency, power and shortened service life.
Consequently, the system integrates
complementary energy sources capable of
absorbing sudden load changes and responding
rapidly to peak demands.

To achieve this hybrid synergy, the proposed
system, illustrated schematically in Fig. 1,
employs a FC connected to the DC bus via an
interleaved boost converter, offering improved
conversion efficiency and reduced ripple. Parallel
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to this, the ESS comprises high-dynamic elements
such as battery packs and SC arrays, each
interfaced with the DC bus through bidirectional
buck-boost converters. These storage units handle
fast transients and short-term load variations
while supporting the primary unit during demand
spikes.

The vehicle’s propulsion subsystem includes a
three-phase inverter coupled to an AC
synchronous motor. This arrangement enables
fine-grained control over mechanical output,
allowing modulation of speed and torque
according to real-time driving conditions and
control algorithms. Together, this architecture
forms a robust energy framework capable of
responding dynamically to the fluctuating power
needs of FCHEV operation.

Q—D(Calculation of requested powel)<—
1
I

ESS Driving cycle

Bi-directional
buck-boost DC/DC
converter

Bi-directional
buck-boost DC/DC

converter

Figure 1: System architecture diagram of a
FCHEYV with three integrated power sources

2.1. Mathematical Modeling of FC Output
Voltage (PEMFC)

The output voltage of a FC (V£Y)) is determined
by the Nernst equation, accounting for activation,
ohmic, and concentration losses [21]:

Vclz(il = Enernst — Nact — Nohm — Nconc (D
K'T PH . PO

E =E%, +—In[—2—"— 2

Nernst cell 2F n( PHZO ( )

For dry hydrogen supplied at pressure P,,o4e,
the partial pressure of hydrogen (Py,) is
calculated using (3). An increase in Py, enhances
the Nernst potential and overall system
performance; however, excessively high pressure
may induce membrane mechanical stress.

— anode
PHZ = Panode — H,0 (3)

The partial pressure of oxygen (Pp,) is
determined using (4). An elevated Py, improves
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reaction kinetics and mitigates activation losses,
thereby contributing to enhanced electrochemical
performance.

— thod
POZ = Yo, (Pcathode - I-CIZO oae (4)

The vapor pressure of water within the FC is
governed by operating humidity and temperature
conditions. Accordingly, the partial pressure of
water (Ppy, o) is computed using (5) and (6).

PHZO =RH - Pfl% &)
B
P5% = 10"7T+C (6)

where, A, B, C are substance-specific empirical
constants. In this investigation, for temperature in

Kelvin and saturated water vapor pressure (P50

in bar, these coefficients are defined as: A =
5.40221, B = 1838.675 and C = —31.737.

Due to sluggish electrode kinetics activation
losses (14.¢) are determined as expressed in (7).

kT j
Nact = an—Fln (]—) (7)

Resistive losses (onm), commonly referred to
as Ohmic losses, arise from the internal resistance
within the electrolyte and associated components,
as characterized in (8).

Nohm =J * Rcl):i('im (8)

Mass transport limitations at high current
densities can be defined as follows:

kT j
Nconc = n_ln (1 - _) )
Combining all terms in (1), (2), (7)-(9) yields:

kT 1 j
VCI;% = Enernst — ﬁ [E In <]_>

#1n(1-2)| = G- REfon
JL

2.2. Mathematical Modeling of Lithium-ion
(Li-ion) Batteries

The SOC represents the remaining charge in the
battery as a percentage of its total capacity. It is
computed using the Coulomb counting method
with possible corrections for efficiency and aging
[22]:

Bayat et al.

1 t
S0C(t) = SOC, — Wf Ne - Igge () dt  (11)
Bat Y0

where, 7. is the coulombic efficiency and
considered 0.98 for a typical Li-ion battery [23].

The open-circuit voltage (OCV), denoted as
V52, represents the battery's equilibrium voltage
corresponding to a specific SOC. Its behavior is
inherently nonlinear and can be mathematically
characterized by (12).

VB (SOC) =a+b-SOC + ¢ - e®S0C (12)

where the fitted coefficients a = 3, b = 0.6, ¢ =
0.2, and d = —5 are calibrated for a typical Li-ion
battery [23].

The actual terminal voltage of the battery under
load, denoted as V%, is influenced by both
instantaneous and transient phenomena [24].
Specifically, it accounts for: (1) Ohmic drop,
resulting from internal resistance and manifesting
as an immediate voltage reduction upon load
application, and (2) Polarization effects,
encompassing slower electrochemical dynamics
that contribute to the transient voltage response.
Mathematically, this relationship can be
represented as:

VP = VgE*(SOC) — IpatRo — Vrer = Vica (13)

In the aforementioned expression, VF%
accounts for three key components: (1) Ohmic
loss (Igqt - Rp): Represents the instantaneous
voltage drop due to the internal resistance Rj.
This parameter is typically measured using
current pulse tests under controlled conditions; (2)
Polarization voltage (Vzc1): Captures the short-
term transient response arising from charge
transfer kinetics. It is commonly modeled as a
first-order = RC  circuit,  reflecting  the
electrochemical dynamics during load transitions
(see (14)); (3) Diffusion voltage (Vg¢y): Reflects
long-term electrochemical dynamics arising from
ion diffusion within the electrolyte. As presented
in (15), this behavior is commonly captured using
a second RC circuit, supplementing the short-term
transient model to account for gradual voltage
evolution under sustained load conditions

Vre1 = Ipat R1(1 - e_t/rl) (14)
Vrez = Ipat - Rz(l - e_t/rz) (15)

Where, T, = R1C1 and Ty = R2C2.

Automotive Science and Engineering (ASE) 4837
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For simulation and control purposes, the dependency of these parameters on temperature
equivalent circuit model can be reformulated in can be incorporated based on empirical
state-space representation, as presented in (16) characterization, allowing the model to predict SC
and (17). This form enables systematic analysis behavior across a wider range of environmental
and design of control strategies, facilitating scenarios.
numerical implementation in dynamic
environments. Fig. 2 presents the battery Ves(t) = I(t) - Rscs(T) (18)
modeling circuit diagram, constructed based on
the previously described modeling approach. YW = N L
Weer _Tpar _ Vacs 6 i 2

dt ¢ RG 3 izVs

SC 21 =
dVrc2 _ Ipat  Vrez a17) Vr E ; S
dt  C, R,G, E rE
R, i i
= I S <
| | | ” | :: K Figure 3: Modeling of SC cells
C;
7] Igu EV%? @ The fa-st charging/discharging dynamics are
f --------- ! characterized by the time constant 7ggq; =
: = Rgc1Csc1, as presented in (19), while the slower
Figure 2: Modeling of Li-ion Battery cells internal charge redistribution is governed by the
time constant Tgcy = RgcpCsca, detailed in (20).
2.3. Fundamental Models of SCs
The two-branch RC model is commonly Vra(t) = 1501(t)R501(1T)
employed to characterize the dual charge storage ——— [ o, (t) dt (19)
mechanisms in SCs, capturing both the rapid Cs 1(T)

(immediate) and slower (diffusion-dependent)
electrochemical dynamics. Fig. 3 presents the SC

modeling circuit diagram. The equivalent series Vai(®) = Isc2(O)Rsca (T)

resistance Rgcq models the fast response, while L ——— [ Ise, (£) dt (20)
the capacitance Cg-; accounts for surface charge CS 2(T)

accumulation via the double-layer effect.

Conversely, the delayed charge branch (slow The total current divides among the respective
dynamics) is characterized by Rgc, representing branches, as presented in (21), while the terminal
diffusion resistance in porous electrodes, and voltage and leakage current are presented in (22)
Csca, capturing deep charge storage within the and (23), respectively.

electrode pores. In addition, the leakage resistance

Rsc; is placed in parallel with Cgc, to model the Isc(t) = Isc1(t) + I5c2(t) 21
self-discharge phenomenon, characterized by a

gradual voltage decay during idle periods. The VFC(t) = Isc(£)Rses(T) + Vg, ()

internal resistance Rgqs comprises contributions + Vege, () 22)
from both the electrolyte and the contact

interfaces between the electrodes and current e (0)

collectors, and is responsible for the instantaneous Iscp(t) = R Sc2 T (23)
voltage drop observed upon current application sct(T)

(see (18)). It is important to note that the
parameters of this model, particularly the
resistances Rgcs, Rsc1, Rscz, and the capacitances
Csc1, Csca, are strongly influenced by operational
conditions such as temperature. While the
simulations in this study utilize parameter values
representative  of a  standard  operating
temperature, the model's structure is inherentl _ _ o —t/Tsc1

suitzli)ble for analyzing thermal effects. Thz Vese, () = IscoRscr (T)(1 — e ) @4

For the fast and slow branch charging
processes, the respective intended voltages are
presented in (24) and (25). By incorporating the
initial voltage drop across the series resistance,
given by Vs (01) = IgcoRscs, the total voltage at
the SC terminal can then be expressed as (26).
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Vese, (0 = IscoRsc2(T)(1 — e~t/Tscz) (25)

VFC(t) = Isco[Rscs(T) + Rscr (T)(1

— e t/Tsc1y & Reo (T)(1
_z—t/rch§]+ sez(T( (26)

2.4. Bidirectional buck-boost DC-DC converter

Fig. 4 illustrates the comprehensive design and
overall  structural configuration of the
bidirectional buck-boost DC-DC converter. This
power converter positioned near the two input
sources (battery and SC) functions in boost mode
during energy discharge (lin_ger > 0) when
switch S; is activated while S, remains inactive.
Conversely, if S is turned off and S, is engaged,
the converter shifts to buck mode, thereby
charging the sources (Ijp—ger < 0). To formally
characterize these operational states, charging and
discharging, a binary variable f§ is introduced as
follows [25]:

0,1ii_rer <0
B — { in—Ref (27)

1 Iip_ger >0

The parameter I;,_ger represents the reference
current drawn from the input energy sources,
serving as a key control variable. Under the boost
configuration, corresponding to the discharging
mode, the system’s dynamic response is governed
by the coupled nonlinear differential equations
outlined in expressions (28) and (29), enabling
precise modeling.

dy —»

Iout*

L 4
v SO
di—» - DC

Figure 4: Overall structural configuration of the
bidirectional buck-boost DC-DC converter

diin Vin Rw VDC
=LY, —(1-d)— 28
dt LW LW I’l?’l ( 1) LW ( )
dVDC iin iout
=(1-d — 29

Bayat et al.

In this context, i;;, denotes the current entering
the system, while V;,, and Vp correspond to the
source voltage and the DC bus voltage,
respectively. The control signal is represented by
dy, and i,,; signifies the converter’s output
current. The parameters L,, and R,, refer to the
input-side wiring inductance and resistance of the
energy sources, respectively. Cp. indicates the
capacitance of the DC bus.

The governing equations for buck-mode
dynamics during charging are given by:

dizn  Vin  Rin Vbe
S Y S - 30
dav, i; i
DC =d, in _o_ut (31)
dt Cpc  Cpc

Here, d, denotes the control input associated
with buck-mode operation. A unified global
model for the converter is derived by combining
the charging and discharging modes as follows:

di; Vin R V)
=, — 8 (32)
dat L, Ly, Ly,
dVDC — iin _ iout (33)
dt Cpc Cpc
Here, § is a final control signal defined as:
6= —dy)+1-p)d, (34)

This approach ensures smooth switching
between charge and discharge states, with
sustained regulation of the system’s dynamic
behavior. Consequently, the input expressions for
the battery and SC can be reformulated, as
indicated in equations (35)-(40). Eventually, the
terminal value of the ESS current is determined
using (41), and the global model for ESS is
obtained in (42). In the present investigation, the
ESS exhibits a multi-input multi-output (MIMO)
architecture with dynamically nonlinear behavior,
which substantially increases the complexity of
achieving  control  objectives. = Moreover,
regulating the output power of the primary source
(FC) constitutes a core control objective, yet the
system’s inherent nonlinearities and
interdependencies further intensify the associated
challenges.

dl yEat R v,
e B £ Igat — Opat o (35)
dt Lwl Lwl Lwl

Automotive Science and Engineering (ASE) 4839
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dVDC _ IBat ioutl

dt B‘”E Cpc

(36)

8gat = Ppar(1— d7*) + (1 = Bpar)d5*  (37)

dlsc £ sz Vb

= — -8 38
dt Ly, sz SC Ly (38)
dVpc _ Is_c _ lout2 (39)
dt CCoc  Cpc
8sc = Bsc(1 —di%) + (1 — Bsc)d3© (40)
ioEif = lout1 + lout2 (41)
dVDC IBat lout 8sclsc (42)
dt Bat ¢ . Cpe

2.5. Interleaved boost DC/DC converter

As depicted in Fig. 5, the interleaved boost
DC/DC converter serves as the primary power
unit for the vehicle’s input stage [26]. It functions
in continuous conduction mode (CCM), enabling
efficient regulation and amplification of the FC
output voltage. The analysis is divided into two
cases based on the switching states.

Case 1: When switch S is activated (ON) and
S, is deactivated (OFF), S; provides a closed path
while diode D; becomes reverse-biased and
remains non-conductive. Conversely, with S,
open, diode D, is forward-biased and conducts
current. Consequently, inductor Lg¢q is energized
through the input voltage VES,, while the stored
energy in Lgc, is transferred to the output circuit
via diode D,. The analytical expressions
corresponding to this operation mode are detailed
in (43)-(45).

Iout >

4=
D, Dy Voc

Irc JRrc1  Lpcy

Gid —

FC Rrc2  Lgce Nz S Cnc
V
cell [ [

ke fdfc

Rload

Figure 5: Overall structural configuration of the
interleaved boost DC/DC converter

diLFCl _ Vcell (43)

dt LFCl
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dincz _ Vcell VDC

(44)

dVDC — iLFCZ _ VDC
dt Cpc  RioaaCpc

(45)

Case 2: When switch S; is turned off and S, is
activated, S; remains in the open state, enabling
diode D; to conduct. In contrast, the closed state
of S, renders diode D, reverse-biased and thus
non-conductive. Under these conditions, inductor
L, is charged by the FC voltage VLS, while the
stored energy in inductor L; is delivered to the
output through diode D;. The corresponding
governing equation for this operating mode is
reformulated as:

P FC
dlLFCl Vce” — VDC

= 46

dt LFCl ( )

diLFCz _ Vcell (47)
dt LFCZ

dVDC _ iLFCl _ VDC (48)

dt  Cpc  RioaaCpe

Using state-space averaging, the unified converter
dynamics are represented by (49) and (50), from
which the output voltage is subsequently derived
as expressed in (51).

di;
LFCl dl;Ci cell - (1 - dl )VDC (49)
di;
LFCZ ﬁ cell - (1 - d )VDC (50)
av,
Coc g = (1= dfDiy,, + 1
. Vpc (1)
- dlZ:C)LLFcz "R
load

3. Hierarchical Nested Cascade Control
Framework

The proposed strategy for energy management
of FCHEVs integrates a FC as the primary power
source along with an ESS. Within the ESS,
batteries offer high energy density but limited
power output, whereas SCs deliver superior power
density and longevity, though at the expense of
energy capacity. This hybrid configuration is
designed to improve FC operational stability and
efficiency, while also optimizing the ESS by
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leveraging the SC's rapid response to peak power
demands and assigning smoother load profiles to
the battery. Central to this framework is the
implementation of a dynamic power distribution
method combined with a resilient control
mechanism, enabling effective handling of
transient load conditions.

The hierarchical nested cascade control
framework illustrated in Fig. 6 is structured across
three coordinated layers: an outer control level
(OCL) governed by the adaptive API controller,
and two inner layers, namely, the middle control
level (MCL) and inner control level (ICL), each
implemented using BS controllers. The primary
objective of the API controller is to regulate the
DC bus voltage, ensuring system-wide voltage
stability under varying load conditions. In
contrast, the BS controllers are responsible for
precise current management of both the FC and
the ESS, which includes the battery and SC.

This multi-tiered configuration enables dynamic
and decoupled control of power flow across the
system. The control sequence begins by applying
the backstepping technique to govern the current
profiles of the FC and ESS components
individually. By isolating control responsibilities
across these nested levels, the framework
enhances robustness against uncertainties and
improves adaptability to transient operating states.
Furthermore, this approach facilitates modular
expansion and allows for the integration of
advanced control policies without compromising
overall system coherence. The synergy between
voltage  regulation and current control
mechanisms enables stable and responsive power
management, which is essential for real-world
FCHEV applications where load variability and
nonlinear dynamics are prevalent.

BS nonlinear control is fundamentally a
recursive design methodology wherein the control
law is constructed incrementally. At each stage of
the synthesis process, a specific system state is
stabilized by treating the subsequent state as a
virtual control input. This iterative approach
results in the formulation of a stabilizing control
function that systematically drives the system
toward its desired equilibrium state, typically a
stable closed-loop configuration. The recursive
nature of BS facilitates a structured and modular
control law derivation, making it particularly
effective for systems exhibiting hierarchical
dynamics or strong nonlinearities. Stability
throughout the control design process is
rigorously ensured by employing Lyapunov-based
functions, which guide the selection of control

Bayat et al.

parameters at each step and verify convergence
toward the desired behavior [27].

In the context of regulating the DC bus voltage
and achieving the control objectives of the
proposed framework, the initial phase involves
defining an appropriate tracking error for FC
system. This error quantifies the deviation
between the actual and target voltage trajectories
and forms the basis for subsequent control
synthesis. The first tracking error for FC, central
to the backstepping procedure, is defined as
follows:

€rca = Ipc — Iffgf (52)
Differentiating (52) and substituting into (49)

and (50) yields the following expression for the
error dynamics:

. . R
depc1 <dlLFC1 N dlLFcz) B dIFgf

dt dt dt dt
_ <Vci€l — (1 — dfC)VDC
B LFCl
| Veen = (1~ d§C)VDc> 3)
LFCZ
4
dt

To assess system stability and convergence, a
Lyapunov candidate function is introduced and
defined as follows:

1
Upcq = 2 (ch,1)2 (54)

Based on Lyapunov’s stability theorem, the
system exhibits asymptotic stability if derivative

of the 9r¢, remains negative. Accordingly, —19’; i’l
can be reformulated as follows:
Urc e x depcq
dt FC,1 dt
— VCP;({Z - (1 - dfC)VDC
= &rca L
FC1 (55)
FC FC Ref
Veell — 1- dz Whoe dIFC
+ _
Lic, dt

Reformulate the (55) to reflect virtual control,
so, the expression is modified as follows:
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Urc1 . <Vci;€l (LrcitLrc2)
= €rca

dt LFI§1LFCZ
___'nc _ JFC
ey (brez(1 =) 56
FC dIFRgf
+ Lpea (1 - df°)) ——22-

Vpc
Lrcilrcz

parameter (y) to ensure that

function as a virtual control

Selecting

9 .
FC1 remains

negative. Consequently, we derive the following:

VDC =y
LFClLFCZ Ref
VES (Lpci+L dly;
Prercy + celt(LrcitLpcy)  Alpc (57)

Lpcilpc dt
Lrca(1—dfS) + Lpey (1 — df©)

where P; denotes a design parameter that governs
the structural configuration of the model.

The subsequent step involves introducing the
second error term, defined as follows:

Vpe
EFC2 LpciLrc: 4 %)

Subsequently, as presented in (59), the term
depc

0 is computed by applying (58) and (51).

depc, (11— dfc)iLFm +(1- dfc)iLFcz
dt CpcLrcilece
VDC d]/ (59)

RioaaCpclrcilrc;  dt

Based on (49), (50), (53), and (57), the time
derivative of y is formulated and presented in

(60). Consequently, the value of % is substituted

into (59) to evaluate the derivative of the second
component of the error term. Subsequently, a
composite Lyapunov function is constructed in
(61).

1 2
Upc2 = 9rca1 + 5 (SFC,Z) (61)

Differentiating the function presented in (61)
yields the following expression:

dpc 2 _ d9pc1 n (dEFc,z

62
dt dt dr EF C'2> (62)

Taking into account the relationship defined in
(55), the following result is obtained:

dVrco (e dgFC,l)
FC1

dt dt
depc; (63)
+(£ X —— )

FC,2 dt
e ______0OCL
_____________________ N

_________ ICL_ X
~ MCL

Tdrc)

e

Figure 6: Proposed hierarchical nested cascade control framework

Ref
P, <VC";% — (1L —dfVpc | Vi —(1- d‘z’C)VDc> _di
dy

(60)

Lpci Lic, dt
dt Lrca(1 = df) + Lec, (1 — d5°)
%
_ JFCy; _ JFCN; _ Vpc
(LpcitLeca) (= di e, + (1= da )iy Rioaa _dzlﬁcef
Lpcilpc Cpc dt?
+

4842 Automotive Science and Engineering (ASE)

Lpco(1—dfS) + Lpe (1 — df©)


http://dx.doi.org/10.22068/ase.2025.722
https://ase.iust.ac.ir/article-1-722-en.html

[ Downloaded from ase.iust.ac.ir on 2025-11-19 ]

[ DOI: 10.22068/ase.2025.722 ]

By strategically adding and subtracting a
specific term to regulate the second component,
(64) can be reformulated as follows:

d9pc 2 ( % dSFc,1)
dt gret X Ty .
SFC,Z)
X 64
+ <£Fc,2 at (64)

2 2
+ Pyepc2” — Paépc2

where P, > 0 denotes a design parameter for
second term that governs the structural
configuration of the model.

To guarantee the negativity of Lorcz , (65) must
be satisfied. Also, the control 1nputs dF ¢ and df¢
should be redefined as new control variables to
ensure the desired dynamic behavior to meet the
stability criteria under varying operating

conditions.

depc degpc,
Erca X BT t Erc2 X dt

+ Pzgpc'zz <0

(65)

Once the FC output has been regulated to
stabilize the DC wvoltage, attention shifts to
managing the output current of the ESS. Based on
the output of the MCL, the reference current for
the ESS is determined to control the output of
ESS. However, achieving this objective
necessitates a nonlinear model that characterizes
the relationship between the input currents of each
ESS, namely Ig,; and Igc, and the associated
control variables &g, and Jgc. To initiate the
control process, the tracking errors are first
defined as follows:

R
Esat3 = Ipar — Iper (66)
&sca = Isc — 1§: ! (67)

By differentiating the error expressions in (66)
and (67), and incorporating the system dynamics
from (35) and (38), the resulting dynamic error
formulations are derived as follows:

degat,3 VT _ Rws _s Vb
dt Ly, LW}" f“ B L .
e
dIBat
dt
Ref
dSSC 4 VT . RWZ I @ _ dISC (69)

dt Ly, Ly, ¢ €L, dt
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In accordance with the control requirements
provided for FC unit, Lyapunov candidate
functions are formulated for both the battery and
SC units to assess system stability and
convergence. These functions are defined as
follows:

1
Upat3z = 2 (gBat,S)z (70)
1
Usca = E (556,4)2 (71)

Based on Lyapunov’s stability criterion, a
system achieves asymptotic stability when the
derivatives of the Lyapunov candidate functions,
Upat3 and Usc 4, are strictly negative. To satisfy
this requirement, these derivatives are deliberately
set t0 —Pzepqr3® and —Pyégc4”, respectively,
where P; and P, denote positive design
parameters, and &gge3, Esc4 correspond to the
associated error signals. By performing
differentiation on (70) and (71), the following
expressions are derived:

d9pa3 depars

d? = Egqt,3 X —d‘tl P3$Bat32 (72)
dIsc 4 desca

dt = Esca X dt = —P4€sc,42 (73)

Substituting the expressions from (68) and (69)
into (72) and (73) yields the following
relationships:

) VBat Rw1 i dlgg
Bat = VDC AT .
+ P 353at,3>
Ly, (VSC R dires
Sep = W2 [T _ w2 _Zsc
s¢ Voe \Lwz  Lw2 s¢ dt (75)

Regarding the global asymptotic stability of the
overall system, it can be inferred from (55), (72),
and (73) that the corresponding expressions are
strictly negative, provided that P;, P,, P3, and P,
are positive. Consequently, by applying Lyapunov
stability theory, the closed-loop control strategy
for the FCHEV power system ensures global
asymptotic stability, as rigorously demonstrated
and validated in (76).
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V) dy dy dy dv
sys _ AVrca | @Urcz | @Upats | “Usca

dt dt dt dt dt
=—P 1SFC,12
- P SFC,ZZ_P3SBat,32 (76)
— P 455c,42

In FCHEV systems, ensuring the stability of the
DC bus voltage is essential for reliable operation.
Hence, the subsequent step involves designing the
OCL to regulate the DC bus voltage, even in the
presence of dynamic load variations. Although PI
controllers are widely employed for this purpose,
their effectiveness may deteriorate in the presence
of load fluctuations, parameter uncertainties, or
external disturbances. To enhance robustness,
MRAC mechanism can be implemented to
continuously tune the PI gains K, and K;, thereby
maintaining consistent voltage regulation under
varying operating conditions. The primary control
objective of the OCL is presented in (77).

EV = VDC - VDrgf (77)
Taking the derivative of equation (77) results in:

de, _dVpe dVpe!
dt  dt dt

(78)

Taking into account the DC bus capacitor and
total input currents, the expression may be
reformulated as:

dey _ Ipc +Ipat + Isc = loaa _ dVpe’
dt dt

(79)

The API controller generates the input current
reference as follows:

IFC + IBat + [SC = KpEV + Kifgvdt (80)

The Lyapunov function is constructed to ensure
the regulation of the DC bus voltage, as follows:

9 _1 2+1ﬁ2+1k2

where, ﬁp =K, — K, represents error in K,
K; = K; — K; represents error in K;, and p,, ji; are
adaptation gains.

. . dv
Differentiate 9, and enforce % < 0to

derive adaptation laws:
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d¥pc y dgV+ 1 7 dK, N 1 7 dK; &)
TR T: W, Pdt oy tdt
dK
P _
W = ,Llp€V2 (83)
dK;
d_tl = ‘Lligvf €V dt (84)

Consequently, by incorporating relations (79),
(80), (83), and (84), relation (82) can be
reformulated as:

d9pc e Kpey + K; [ eydt — I 1004
dt 4 dt
avrer
— 51:6 >+ K,e,? (85)

+ Eigyf &y dt

To make adaptation sensitive to error
magnitude, normalize gains are as follows:

Op

A expected &2 (86)

O;

Hi= max expected |gy - [ &y dt| (87)

where o,, o0; denote dimensionless scaling
coefficients, assigned values of 0.35 and 0.6,
respectively.

4. Simulation and Analysis

To assess the effectiveness of the proposed
EMS based on the hierarchical nested cascade
control framework, a series of simulations were
conducted using the MATLAB/Simulink
environment. The system parameters employed in
the simulation are summarized in Table 1.
Additional general parameters are provided in the
last section (see list of symbols). The hybrid
powertrain under consideration is configured for a
FCHEV, integrating three complementary energy
sources: Battery, UC, and FC.

The load profile is intentionally crafted to
incorporate abrupt fluctuations in power demand,
effectively simulating realistic driving conditions
using the standardized WLTC-Class 3 driving
cycle, as illustrated by the diverse speed profile
shown in Fig. 7. This cycle, characterized by
distinct acceleration, deceleration, and idling
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phases, imposes diverse transient load patterns on
the hybrid energy system and highlights the low,
medium, high, and extra-high speed phases used
to simulate real-world driving conditions.
Throughout the simulation, the DC bus reference
voltage is maintained at a constant 380V to ensure
consistent baseline conditions for performance
evaluation. The primary objective of this analysis
is to investigate the transient response of the
FCHEV system under dynamic load scenarios.
Particular attention is given to the voltage and
current stability during rapid load transitions. The
proposed EMS demonstrates robust control
performance, effectively coordinating power
distribution among the three energy sources and
minimizing voltage deviations and current
overshoots. The findings presented in this section
highlight the robustness and efficacy of the
proposed control framework in significantly
improving system resilience, promoting dynamic
adaptability to varying operational conditions, and
optimizing energy utilization within FCHEV
architectures. By seamlessly integrating adaptive
control strategies with real-time system feedback,
the framework demonstrates its potential to
address the multifaceted challenges of modern
FCHEVs, thereby contributing to enhanced
performance, sustainability, and reliability in
next-generation transportation technologies.

Table 1: System parameters of the hybrid EMS
under study

Symbol Value
Ry (ch,dch) (0.85m, 0.7mM0)
Ry 35mn
Ry 380 mNn
G 90 F
G2 450 F
Bat 40 kWh
V6&(S0C = 100) 260V
Rges 0.5 mn
Rscr 300
Rsc1 8.5 mMN
Rgcr 65 mf
Csc1 60 F
Cscz 2400 F
Rwlr RWZ 0.5mn
Lwlr Lw2 5mH
Rrc1.Rec2 1mn
LrcisLpca 1.6 mH
Rfm 20 m
T 334K
Py, P, P3, Py 2800,2500,1500,2000
Cpc 30 mF
vy 380V
Panode 2atm
Pcathode 1.5atm
RH 50 %

Bayat et al.
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Figure 7: Speed—time profile of the standardized
WLTC-Class 3 driving cycle, illustrating the
distinct phases used to simulate realistic driving
conditions.

In the present investigation the total
instantaneous electric power demand of an
FCHEV is determined by the product of the total
tractive force Fy, acting on the vehicle and its
velocity v, and also overall drivetrain efficiency

Narivetrain (0.85).

F,
Prchpy = ol . v (88)

drivetrain

The total tractive force comprises several
components, including gravitational force due to
road slope, inertial force, rolling resistance,
aerodynamic drag, and regenerative braking
effects. These forces can be expressed as:

Ftotal = Fslope + Finertial + Ffriction + Fdrag
+ Eegen (89)

Combining these components, the total electric
power demand is considered as follows:

mgsin(6) + ma + mgC,cos(6)

PEV= V.
Narivetrain

(90)

1
n prdsz - nregenma

Narivetrain

Here, a denotes the vehicle’s linear acceleration
(positive during acceleration, negative during
deceleration). The rolling resistance coefficient C,
depends on tire characteristics and road surface
conditions, in this study C, = 0.01. Also, m =
1500 kg, g =9.81m/s?, p = 1.225kg/m>,
Cy =03, A=25m? Moreover, during
deceleration (a < 0), regenerative braking
recovers a fraction of kinetic energy. In doing so,
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Figure 8: Total instantaneous electric power
demand of the FCHEYV under the WLTC-Class 3
driving cycle.

Mregen T€presents the regenerative braking
efficiency, which is typically set to 0.75.

Based on the prescribed drive cycle and the
formulation of vehicle longitudinal dynamics, the
total instantaneous electric power demand is
determined as presented in Fig. 8.

To assess the performance and advantages of
the proposed energy management strategy for
hybrid electric vehicles, the results are
systematically compared with two established
benchmark approaches, as outlined below:

m Case 1: Application of the proposed
hierarchical nested cascade control framework.

m Case 2: Deployment of a data-driven
reinforcement-learning-based on the type-1 fuzzy
logic controller, as described in [13].

m Case 3: Utilization of a real-time control
strategy, as presented in [10].

In this study, the current profiles and power
distribution among the three energy sources,
battery, SC, and FC, within an FCHEV were
analyzed under three distinct EMSs, referred to as
Case 1, Case 2, and Case 3. Case 1 consistently
demonstrated  superior performance across
multiple metrics. Specifically, as shown in Fig. 9,
it exhibited the lowest current ripple, which is
critical for enhancing the longevity and efficiency
of power electronic components. Additionally,
Case 1 minimized the instantaneous power
demand from both the battery and the SC, thereby
reducing thermal stress and improving overall
energy efficiency. Notably, this strategy also
facilitated a more effective and sustained
utilization of the FC’s capacity, ensuring that its
output was leveraged optimally without inducing
excessive transients. In contrast, Case 2 showed
less favorable results, with higher current ripple
and greater reliance on the battery and SC, leading
to increased strain on these components. Case 3
performed marginally better than Case 2 but still
fell short of the performance achieved by Case 1.
These findings underscore the robustness of Case

4846 Automotive Science and Engineering (ASE)

1 as the most balanced and efficient strategy,
offering improved dynamic response and better
resource allocation among the available energy
sources.

Fuel Cell Current Comparison
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Figure 9: Total current of each power sources based
on electric power demand of the FCHEV; (a) FC,
(b) Battery, and (c) SC

The power allocation strategy in Case 1 is
designed to distribute the load demand more
evenly across the available energy sources,
thereby significantly reducing the instantaneous
power spikes typically imposed on the battery and
SC. As illustrated in Fig. 10, by smoothing the
power flow and avoiding abrupt transients, Case 1
effectively mitigates electrical and thermal stress
on these components, which is crucial for
prolonging their operational lifespan and
maintaining system reliability. Moreover, this
strategy allows the FC to operate closer to its
optimal efficiency range, with fewer idle periods
and more consistent power output, leading to
enhanced FC utilization (see Fig. 11). In contrast,
Case 2 exhibits a less coordinated power
distribution, resulting in frequent high-power
demands from the battery and SC, which not only
accelerates degradation but also limits the FC’s
contribution to the overall energy supply. Case 3
performs marginally better than Case 2 in terms of
FC engagement, yet still suffers from inefficient
load sharing and elevated stress levels on the
auxiliary sources. These comparative results
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Figure 10: Total power of each battery and SC sources based on electric power demand of the FCHEV
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Figure 11: Total power of FC based on electric power demand of the FCHEV

highlight the effectiveness of Case 1 in
achieving a balanced and efficient energy
management scheme that prioritizes component
longevity and system-level optimization.

By zooming into the selected region of the
image, the finer details of the power flow
dynamics and component interactions are more
clearly visualized. This magnified section
provides enhanced clarity regarding the transient
behavior of current distribution, allowing for a
more precise interpretation of how the proposed
strategy in Case 1 effectively mitigates stress on
the battery and SC while optimizing FC
utilization.

The initial SOC of the battery was set to 85%
for all three cases to ensure a consistent starting
point for comparison. As shown in Fig. 12(a), at

the end of the drive cycle, Case 1, representing the
proposed energy management strategy, resulted in
a final SOC of 74.2%, indicating a more
controlled and efficient battery usage. In contrast,
Case 2 and Case 3 showed significantly lower
final SOC values of 71% and 72.5%, respectively,
reflecting higher energy depletion and less
effective load balancing. These results confirm
that Case 1 not only reduces the depth of
discharge but also contributes to improved battery
sustainability and long-term performance within
the FCHEYV system.

As presented in Fig. 12(b), the proposed energy
management strategy in Case 1 significantly
reduces voltage ripple throughout the drive cycle,
primarily due to its adaptive ripple mitigation
approach. This method continuously considers the
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injected power from auxiliary sources and reliable and efficient energy management in
actively utilizes voltage feedback, resulting in a hybrid electric vehicles and other multi-source
smoother and more stable voltage profile. In power systems, particularly under highly variable
contrast, Case 2 exhibits pronounced fluctuations operating conditions.

in voltage ripple, with sharp increases and

P . 4.1. itivit lysis: t inst
decreases indicating poor regulation. Although Sensitivity analysis: robustness agains

Case 3 performs better than Case 2, it still battery aging

presents considerable ripple levels that can In this section, a sensitivity analysis was
adversely affect system reliability. Excessive performed to assess the robustness of the
voltage ripple in FCHEVs contributes to proposed hierarchical control framework against
component degradation, reduced battery lifespan, battery parameter drifts, which serve as key
and ultimately leads to suboptimal vehicle indicators of aging. Following the methodology
performance. The results clearly demonstrate that outlined in [28], battery degradation was emulated
Case 1 offers superior voltage stability, enhancing by deliberately modifying critical parameters
both energy efficiency and long-term durability of within the equivalent circuit model (ECM) during
the powertrain system. simulation. Specifically, the internal resistance

(Ry) was increased by 20%, and the nominal
capacity (Qga’) was reduced by 15% to reflect a
moderate state of health degradation.

Case 1 =emmnnns Case 2 ‘
Battery SOC with Different Control Strategies

’ == == Case3

The results of this analysis confirm the inherent
resilience of the nested cascade control structure.
Despite the imposed parameter degradation, the
@ | . , , , | . system consistently maintained DC bus voltage

200 400 600 800 1000 1200 1400 1600 1800 stability, with the API controller at the outer
_Battery Terminal Voltage control level successfully regulating the voltage
within a tolerable deviation of £3.5 V from the
380 V reference under the WLTC-Class 3 cycle.
This represents only a 1.5 V increase in the
maximum deviation compared to the nominal case
I O O s e presented in Section 4. However, the analysis also
0 200 400 600 800 1000 1200/1400 1600 1800 revealed expected trade-offs. The voltage ripple

Time [s] l exhibited a marginal increase of approximately
' 18%, and the final battery SOC was 0.8% lower at
the end of the drive cycle compared to the
nominal scenario. This indicates that while the
system remains stable, the efficiency of power
distribution is slightly impacted as the controller
works harder to compensate for the altered plant
Figure 12: (a) The SOC of battery units, and (b) dynamics.
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& P As illustrated in Fig. 13(a) and (b), the

demand of the FCHEV e . .
presented sensitivity analysis unequivocally
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The simulation results demonstrate that the

proposed EMS architecture for FCHEVs (Case 1) cascade control framework (Case 1) possesses
significantly enhances voltage and current inherent structural robustness that makes it

stability across all tested scenarios. Compared to significantly more resilient to battery degradation
conventional hybrid EMS configurations (Cases 2 compared to the other benchmark strategies.

and 3) incorporating three power sources, namely, The following provides a detailed account of the
battery, UC, and FC, the proposed system exhibits proposed  control framework’s superior
superior dynamic response and robustness. This performance under degraded battery conditions:

improvement is attributed to the optimized power
distribution  strategy and adaptive control
mechanisms embedded within the EMS, which
effectively mitigate voltage fluctuations and
suppress current overshoots during abrupt load
transitions. Overall, the findings underscore the
potential of the proposed EMS to deliver more

m Case | (Proposed): Exhibits the smallest
performance drop across all key metrics. With
aresilience index of 96.5%, it retains the vast
majority of its nominal performance even when
the battery's internal resistance increases by 20%
and its capacity degrades by 15%. The
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performance loss is marginal, typically between 3-
5%.

m Case 2: Suffers a severe performance decline,
with a resilience index of only 84.2%. Its
performance degrades by 8-12% across the board,
indicating a fundamental lack of adaptability to
the altered system dynamics caused by aging.

m Case 3: Performs better than Case 2 but worse
than Case 1, with a resilience index of 89.7% and
performance losses in the 6-9% range.
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Figure 13: (a) Performance radar chart under
battery aging; (b) Relative performance loss due to
battery aging

Even when operating with a degraded battery,
the absolute performance of Case 1 remains
higher than the nominal (new battery)
performance of the other two methods. For
instance, the degraded voltage stability of Case 1
(91.2%) is still superior to the nominal voltage
stability of Case 2 (82.3%). This means that our
proposed controller, even when handicapped by
an aged battery, outperforms a brand-new system
using the Case 2 strategy.

The time-domain plot of DC bus voltage clearly
shows that Case 1 maintains the tightest voltage
regulation with the smallest ripple magnitude
under degraded conditions. The adaptive PI (API)
controller in the outer loop, combined with the
robust  backstepping  current  controllers,

Bayat et al.

dynamically compensates for the increased
internal resistance, preventing the large voltage
swings seen in Cases 2 and 3. This directly
translates to reduced stress on all vehicle electrical
components and a longer system lifespan.

The proposed strategy demonstrates intelligent
power allocation, resulting in only a 0.8% greater
SOC depletion at the end of the drive cycle
compared to the nominal case. In contrast, Cases
2 and 3 show significantly higher SOC depletion
(approximately 2-3% more), indicating less
efficient use of the degraded battery's limited
energy and a tendency to over-stress it.

This sensitivity analysis underscores a valuable
direction for future work. To preemptively
mitigate these effects and maintain optimal
performance throughout the vehicle's lifespan, the
proposed MRAC-based API controller can be
seamlessly integrated with a real-time parameter
identification tool, such as the hybrid adaptive
battery parameter estimation (HABPE) method
[28]. The HABPE approach, with its ability to
accurately estimate ECM parameters like R, and
QBa™ from operational voltage and current data
(achieving 82-87% accuracy as reported), would
provide real-time updates to the adaptive
controller's reference model. This hybrid strategy
would enable the control system to not only react
to instantaneous errors but also proactively adapt
its tuning laws to the slowly evolving parameters
of an aging battery, thereby ensuring sustained
optimal performance, efficiency, and component
longevity.

4.2. Validation under real-world urban driving
conditions

To initiate the simulation analysis, this section
adopts the date-specific driving cycles formulated
for Shiraz city, as proposed in [29]. In particular,
the Shiraz working-day driving cycle was selected
for validation due to its distinctive features
compared to holidays, namely, a higher
proportion of idling time (8.32% compared to
2.65%), reduced average trip speed (23.29 km/h
versus 39.64 km/h), and frequent acceleration and
deceleration events. These attributes typify
congested urban traffic scenarios and thus serve as
a rigorous benchmark for evaluating the resilience
of energy management systems under conditions
of rapid power fluctuation and elevated peak
demand.

To better illustrate the current ripple behavior
under congested urban traffic conditions, the
battery and SC current profiles during the initial
300 seconds, corresponding to the most intense
stop-and-go phases, were extracted and depicted
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in Figures 14(a) and (b). The battery current
profile under Case 1 exhibits exceptional
smoothness with a minimal ripple of 13.3A,
dramatically outperforming Case 2 (18.1A) and
Case 3 (15.7A). More significantly, Case 1
implements an intelligent bidirectional current
management strategy that strategically utilizes
regenerative braking phases and low-power
demand intervals for controlled battery charging,
while optimizing discharge patterns during
acceleration and high-load conditions. The SC
performance further underscores the framework's
excellence, with Case 1 achieving an
unprecedented current ripple of only -21.6A
compared to -24.2A in Case 2 and -25.37A in
Case 3. This sophisticated control architecture
effectively leverages the SC's innate rapid
response characteristics to handle high-frequency
power transients, thereby shielding both the
battery and FC from damaging current spikes. The
harmonious current distribution not only reduces
thermal stress compared to conventional
approaches but also enhances overall system
efficiency, validating the framework's practical
superiority in real-world driving scenarios with
highly dynamic load profiles.

The battery SOC analysis during the initial 300
seconds, provides compelling evidence of the
proposed energy management strategy's
exceptional capability in optimizing energy
sustainability and extending battery lifecycle.
Throughout the comprehensive drive cycle
evaluation, Case 1 demonstrates superior SOC
management, concluding with a final SOC of
82.8% compared to 81.6% for Case 2 and 82.01%
for Case 3. This 1.2 percentage point
improvement over the fuzzy logic approach
translates to approximately 1.28 kWh of
additional usable energy retention, significantly
extending the vehicle's operational range while
reducing depth of discharge cycles that accelerate
battery degradation mechanisms.

The economic model developed in this study
establishes a comprehensive correlation between
seven pivotal performance parameters and the
overall lifecycle cost of FCHEVs. Specifically,
voltage ripple undermines the reliability of power
electronic converters, while current ripple
contributes to accelerated degradation of passive
and active components. Efficiency losses translate
directly into elevated operational energy
expenditures, and SOC management plays a
decisive role in preserving battery health and
extending usable life. Moreover, cycling
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frequency governs the timing and frequency of
component  replacements,  thermal  stress
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Figure 14: System performance evaluation under

representative urban driving conditions (initial 300

seconds): (a) Battery current profile; (b) SC current

profile; (c) Battery SOC trajectory.
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exacerbates  aging  mechanisms  across
electrochemical and electronic domains, and
cumulative degradation ultimately constrains the
system’s functional lifespan. As rigorously
quantified in Fig. 15(a) and (b), the proposed
hierarchical control framework consistently
outperforms conventional strategies across all
evaluated economic indicators, thereby offering a
robust and cost-effective solution for FCHEV
energy management under realistic and
dynamically varying urban driving conditions.

4.3. Clarification on adaptive gain formulation:

The adaptive gains u,, and y; in the proposed
controller are not fixed constants but are
computed in real-time using the normalization
scheme defined by (86) and (87). In this section,
the sensitivity analysis is conducted by varying
scaling coefficients (0, 0;) to understand their
individual and combined impact on system
performance. This method directly reflects how a
control engineer would tune the adaptive
controller in practice. The nominal values from
our original study were o,= 0.35 and o; = 0.6.
The performance was evaluated under the WLTC-
Class 3 driving cycle using four key metrics, and
the corresponding results are summarized in the
Table 2.

1. Integral of absolute voltage error (IAVE):
I Vbc — VE&f|dt, measuring overall voltage
regulation accuracy.

2. Maximum voltage overshoot: The peak
positive deviation from the 380V reference

Bayat et al.

during transients.

3. Settling time: Time required for DC bus
voltage to enter and remain within a +2V
band after startup.

4. Average voltage ripple: Average peak-to-peak
voltage fluctuation during steady-state
conditions.

The analysis reveals a clear performance trade-
off governed by the scaling coefficients:

m Low values (Cases A, B): Low values for
both o, and o; result in slow adaptation, leading
to a sluggish response, poor disturbance rejection,
and the highest value of IAVE. The controller
fails to keep up with the dynamic power demands
of the drive cycle.

m High o}, and low o; (Case F): An excessively
high o, relative to o; makes the proportional
action too aggressive. This causes significant
overshoot and voltage oscillations during
transients, increasing stress on the components
despite a fast settling time.

m Low o}, and high o; (Case G): A high o; with
low o, results in an overly dominant integral
action. This eliminates overshoot but leads to a
very slow response, failing to mitigate voltage
dips effectively during rapid acceleration.

m Moderate values (Case C): This case
represents a conservative tuning approach. With
both gains lower than the nominal values, the
adaptive mechanism becomes more cautious. This
results in good stability with minimal overshoot
(3.5V) but at the cost of a slower response

Table 2: Sensitivity analysis of adaptive controller scaling coefficients (o, ;).

Scaling Coefficients (o,, IAVE (V- Max Overshoot Settling  Average Voltage o L.
Case . s) W) Time (s) Ripple (V) Qualitative Assessment
A (0.10, 0.10) 2145 5.2 52.1 35 Very sluggish adaptation, poor
disturbance rejection.
B (0.20, 0.40) 165.3 4.1 31.8 2.8 Slow response, high cumulative
error.
C (0.30, 0.50) 121.7 3.5 18.9 2.2 Good performance, approaching
optimal.
D  (0.35,0.60) [Tuned] 98.4 2.8 12.3 1.7 Optimal balance: Robust and
responsive.
E (0.50, 0.55) 105.2 33 9.5 1.9 Fast but slightly oscillatory.
F (0.60, 0.30) 142.8 45 3.1 26 Aggressive proportional action
causes overshoot.
G (0.25, 0.80) 135.6 3.1 25.4 23 Overly conservative integral

action, slow.
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(settling time of 18.9s). The IAVE (121.7 V.s) is
significantly higher than the nominal case,
indicating that the controller is too slow to correct
voltage deviations effectively during aggressive
transients in the WLTC cycle. It demonstrates that
under-damping the adaptation process leads to a
lag in the system's response.

m Tuned values (Case D): The combination 6,=

0.35 and o; = 0.60 achieves the best compromise.
It provides a fast enough response to handle
transients (low settling time) while maintaining
excellent stability (low overshoot and ripple),
resulting in the lowest IAVE.

This sensitivity analysis confirms that the
scaling coefficients selected for the proposed
controller are not arbitrary but represent a
carefully tuned balance. The op/0; ratio of
approximately 0.58 found in Case D proves to be
optimal for the specific dynamics of the FCHEV
powertrain, effectively managing the trade-off
between responsiveness and damping.

5. Conclusions

This study presented a novel hierarchical nested
cascade control framework aimed at enhancing
voltage regulation and current management in
FCHEVs. The proposed architecture successfully
addressed the limitations of conventional cascade
control systems by reducing design complexity
and improving operational resilience under
dynamic and uncertain conditions. Through the
integration of adaptive proportional-integral
control and backstepping techniques across three
coordinated control layers, OCL, MCL, and ICL,
the system achieved precise regulation of DC bus
voltage and current flow among FCs, batteries,
and SCs. The simulation results validated the
effectiveness of the proposed energy management
strategy, particularly in Case 1, which consistently
outperformed Cases 2 and 3 across multiple
performance metrics. Case 1 demonstrated the
lowest current ripple, minimized instantaneous
power demand from auxiliary sources, and
facilitated optimal FC utilization. These attributes
collectively contributed to reduced thermal stress,
enhanced energy efficiency, and prolonged
component lifespan. Furthermore, Case 1
achieved a more balanced power distribution,
smoothing transient responses and mitigating
electrical and thermal stress on the battery and
SC. Battery SOC analysis revealed that Case 1
maintained a higher final SOC, indicating more
controlled and sustainable battery usage. Voltage
ripple analysis further confirmed the superiority
of Case 1, with significantly smoother voltage
profiles throughout the drive cycle. In contrast,
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Cases 2 and 3 exhibited higher ripple levels and
less efficient load sharing, leading to increased
component degradation and suboptimal system
performance. Overall, the findings underscored
the robustness and scalability of the proposed
EMS architecture. By directly employing physical
control inputs and eliminating virtual controllers,
the system reduced inter-layer interference and
improved real-time responsiveness. The modular
design also allowed for future integration of
advanced control policies, making it a promising
solution for next-generation FCHEV energy
management  systems. The  demonstrated
improvements in voltage stability, current
regulation, and energy distribution confirmed the
potential of this approach to deliver reliable,
efficient, and durable performance in multi-source
hybrid electric powertrains.

5.1. Future work

While this study has demonstrated the efficacy
of the proposed hierarchical nested cascade
control framework within a FC/battery/SC hybrid
system, its underlying architecture is inherently
modular and holds promise for broader
application. Future work will focus on extending
and validating this control strategy across diverse
hybrid powertrain configurations. This includes
integration with other energy storage and
conversion technologies, such as hydraulic
accumulators and flywheels, as suggested in
parallel research [30]. Investigating the
framework's performance in such multi-source
environments ~ will  further  solidify its
generalizability, robustness, and potential as a
scalable solution for next-generation hybrid
vehicle energy management systems. Also, other
future work will focus on integrating a health-
aware layer into the EMS, potentially employing a
hybrid model predictive and fuzzy logic control
for real-time state of power estimation [31], to
dynamically adapt power allocation based on
battery degradation state and further prolong
component lifespan.
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List of symbols

£O Standard reversible potential (~1.23V for
cell  PEMFC)

Universal gas constant (8.314 J/mol-K)
Operating temperature (K)

Faraday’s constant (96,485 C/mol)
Current density (A/cm?)
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Jo Exchange current density (catalyst-dependent)

a Charge transfer coefficient (~0.5 for PEMFC)

n Number of electrons transferred (2 for Hz)

RFC Total area-specific resistance (membrane +
ohm  contacts)

. Limiting current density (gas diffusion-

z dependent)

P{T§%¢  The water vapor pressure at the anode

P,_Cl%h"de The water vapor pressure at the cathode

Yo, 0.21 (mole fraction of O, in air)

RH The relative humidity (0-100%)

S0C, Initial SOC (100% for a fully charged battery)
nom

o Nominal battery capacity (Ah)

I Battery current (A), positive for discharge and
Bat negative for charge
SC current (A), positive for discharge and

negative for charge
iESS Total current of ESS (battery and SC)

ISC

m The vehicle mass

g The gravitational acceleration

0 The road inclination angle (fixed at 5° =
0.087 rad)

Cy The rolling resistance

p The air density

Cy The drag coefficient

A The vehicle’s frontal area
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